Maximus Опубликовано 17 апреля, 2013 Жалоба Поделиться Опубликовано 17 апреля, 2013 (изменено) Подвеска автомобиля предназначена для обеспечения упругой связи между колесами и кузовом автомобиля за счет восприятия действующих сил и гашения колебаний. Подвеска входит в состав ходовой части автомобиля. Подвеска автомобиля имеет следующее общее устройство -направляющий элемент; -упругий элемент; -гасящее устройство; -стабилизатор поперечной устойчивости; -опора колеса; -элементы крепления. Направляющие элементы обеспечивают соединения и передачу сил на кузов автомобиля. Направляющие элементы определяют характер перемещения колес относительно кузова автомобиля. В качестве направляющих элементов используются всевозможные рычаги: продольные, поперечные, сдвоенные и др. Упругий элемент воспринимает нагрузки от неровности дороги, накапливает полученную энергию и передает ее кузову автомобиля. различают металлические и неметаллические упругие элементы. Металлические упругие элементы представлены пружиной, рессорой и торсионом. В подвесках легковых автомобилей широко используются витые пружины, изготовленные из стального стержня круглого сечения. Пружина может иметь постоянную и переменную жесткость. Цилиндрическая пружина, как правило, постоянной жесткости. Изменение формы пружины (применение металлического прутка переменного сечения) позволяет достичь переменной жесткости. Листовая рессора применяется на грузовых автомобилях. Торсион представляет собой металлический упругий элемент, работающий на скручивание. К неметаллическим относятся резиновые, пневматические и гидропневматические упругие элементы. Резиновые упругие элементы (буферы, отбойники) используются дополнительно к металлическим упругим элементам. Работа пневматических упругих элементов основана на упругих свойствах сжатого воздуха. Они обеспечивают высокую плавность хода и возможность поддержания определенной величины дорожного просвета. Гидропневматический упругий элемент представлен специальной камерой, заполненной газом и рабочей жидкостью, разделенных эластичной перегородкой. Схема однотрубного газонаполненного амортизатора Гасящее устройство (амортизатор) предназначено для уменьшения амплитуды колебаний кузова автомобиля, вызванных работой упругого элемента. работа амортизатора основана на гидравлическом сопротивлении, возникающем при протекании жидкости из одной полости цилиндра в другую через калибровочные отверстия (клапаны). Различают следующие конструкции амортизаторов: однотрубные (один цилиндр) идвухтрубные (два цилиндра). Двухтрубные амортизаторы короче однотрубных, имеют большую область применения, поэтому шире используются на автомобиле. Схема двухтрубного газонаполненного амортизатора У однотрубных амортизаторов рабочая и компенсационная полости расположены в одном цилиндре. Изменение объема рабочей жидкости, вызванные температурными колебаниями, компенсируются за счет объема газовой полости. Двухтрубный амортизатор включает две, расположенные одна в другой, трубы. Внутренняя труба образует рабочий цилиндр, а внешняя - компенсационную полость. В ряде конструкций амортизаторов предусмотрена возможность изменения демпфирующих свойств: ручная регулировка клапанов перед установкой амортизатора на автомобиль; применение электромагнитных клапанов с изменяемой площадью калибровочных отверстий; изменение вязкости рабочей жидкости за счет воздействия электромагнитного поля. Стабилизатор поперечной устойчивости противодействует увеличению крена при повороте за счет перераспределения веса по колесам автомобиля. Стабилизатор представляет собой упругую штангу, соединенную через стойки с элементами подвески. Стабилизатор может устанавливаться на переднюю и заднюю ось. Опора колеса (для передней оси - поворотный кулак) воспринимает усилия от колеса и распределяет их на другие элементы подвески (рычаги, амортизатор). Элементы подвески соединяются между собой и с кузовом автомобиля с помощью элементов крепления. В подвеске используются, в основном, три вида креплений: -жесткое болтовое соединение; -соединение с помощью эластичных элементов (резино-металлические втулки, сайлент-блоки); -шаровой шарнир (шаровая опора). Эластичные элементы используются для присоединения элементов подвески к кузову и в отдельных случаях к опоре колеса. Соединение с кузовом осуществляется через подрамник. Эластичные элементы гасят вибрации определенной частоты и, тем самым, снижают уровень шума в подвеске. Шаровой опорой называется вид шарнирного соединения, который за счет степени свободы обеспечивает правильную геометрию поворота ведущих колес. Шаровая опора устанавливается на нижнем рычаге передней подвески, а также на конце тяги рулевого механизма. Для удобства эксплуатации шаровые опоры делают съемными. В зависимости от конструкции направляющих элементов различаютдва типа подвески - независимая и зависимая. Зависимая подвеска объединяет колеса жесткой балкой, и образует так называемый мост автомобиля. Перемещение одного из колес в поперечной плоскости передается другому колесу. Зависимая подвеска вследствие своей простоты имеет высокую надежность. В независимой подвеске связь между колесами отсутствует. Колеса перемещаются в поперечной плоскости независимо друг от друга, чем достигается значительное снижение неподрессоренных масс и повышение плавности хода. На современных легковых автомобилях независимая подвеска используется в качестве основной конструкции передней и задней подвесок. Виды подвесок Различают следующие виды независимых подвесок -подвеска на двойных поперечных рычагах; -подвеска МакФерсон; -многорычажная подвеска -подвеска на продольных рычагах; -торсионная подвеска. В качестве задней подвески автомобиля используется подвеска на продольных рычагах. Остальные виды подвесок могут использоваться как на передней, так и на задней оси автомобиля. Наибольшее распространение на легковых автомобилях получили следующие виды подвесок:-на передней оси – подвеска МакФерсон; -на задней оси – многорычажная подвеска. На некоторых внедорожных автомобилях и автомобилях премиум-класса устанавливается пневматическая подвеска, в которой используются пневматические упругие элементы. Особое место в конструкции подвесок занимает гидропневматическая подвеска, разработанная фирмой Citroen. Конструкция пневматической и гидропневматической подвески построена на известных типах подвесок. В настоящее время многие автопроизводители оборудуют свои автомобили активной подвеской. Разновидностью активной подвески является т.н. адаптивная подвеска, в которой предусмотрено автоматическое регулирование демпфирующей способности амортизаторов. ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Подвеска на двойных поперечных рычагах С момента своего создания в 1935 году подвеска на двойных поперечных рычагах считается конструкторами идеальным видом независимой подвески, т.к. обеспечивает постоянный контроль за характером движения колеса. Двойные поперечные рычаги подвески всегда поддерживают колесо перпендикулярно поверхности дороги, чем достигает высокая управляемость автомобиля. Подвеска на двойных поперечных рычагах может применяться на передней и задней оси автомобиля. Подвеска используется в качестве передней подвески на многих спортивных автомобилях (Ferrari, TVR, Lotus), седанах представительского и бизнес класса (Mercedes-Benz, BMW, Honda, Alfa Romeo). На задней оси автомобиля подвеска на двойных поперечных рычагах используется редко. В силу своей конструкции подвеска занимает значительный объем при установке и уменьшает объем багажника. С другой стороны применение подвески на задней оси приводит к избыточной управляемости (отклонению задних колес в противоположную к повороту сторону) и потере контроля над автомобилем. Схема на примере передней подвески автомобиля Mercedes-Benz SLS AMG Схема подготовлена по материалам сайта caranddriver.com1-верхний поперечный рычаг 2-амортизатор 3-пружина 4-приводной вал 5-рулевая тяга 6-нижний поперечный рычаг Конструкция подвески на двойных поперечных рычагах включает два поперечных рычага, пружину и амортизатор. Рычаг может иметь U-образную или L-образную форму. Каждый из рычагов имеет две точки крепления к кузову автомобиля и одну к поворотному кулаку. Крепление к кузову осуществляется с помощью резинометаллических втулок – сайлентблоков, которые противостоят продольным нагрузкам при ускорении и торможении. Крепление рычагов к поворотному кулаку производится посредством шаровых шарниров – т.н. шаровых опор. Верхний рычаг, как правило, имеет меньшую длину, что дает отрицательный угол развала колеса при сжатии и положительный – при растяжении (отбое). Данное свойство придает дополнительную устойчивость автомобилю при прохождении поворотов, оставляя колесо перпендикулярным дороге независимо от положения кузова. Пружина и амортизатор в подвеске на двойных поперечных рычагах выполнены соосно. Амортизатор верхней частью крепиться к кузову автомобиля, нижней – шарнирно к нижнему поперечному рычагу. Несмотря на все преимущества, подвеска на двойных поперечных рычагах имеет ряд существенных недостатком, среди которых сложность конструкции и связанная с ней трудоемкость обслуживания, значительные геометрические размеры. Этих недостатков лишена подвеска МакФерсона, в которой верхний поперечных рычаг заменен на амортизаторную стойку. Дальнейшим развитием подвески на двойных поперечных рычагах является и многорычажная подвеска. В ней сдвоенные поперечные рычаги разделены на отдельные рычаги, при этом один из нижних рычагов выполнен продольно оси автомобиля. Это позволило избавиться от отрицательного угла развала задних колес, добиться эффекта подруливания в поворотах и, тем самым, повысить управляемость автомобиля. ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Подвеска МакФерсон (McPherson) является самым распространенным видом независимой подвески, который применяется на передней оси автомобиля. По своей конструкции подвеска МакФерсон является развитием подвески на двойных поперечных рычагах, в которой верхний поперечный рычаг заменен на амортизаторную стойку. Благодаря компактности конструкции подвеска McPherson широко используется на переднеприводных легковых автомобилях, так как позволяет поперечно разместить двигатель и коробку передач в подкапотном пространстве. К другим преимуществам данного типа подвески относятся простота конструкции, а также большой ход подвески, препятствующий пробоям. Вместе с тем, конструктивные особенности подвески (шарнирное крепление амортизаторной стойки, большой ход) приводят к значительному изменению развала колес (угла наклона колеса к вертикальной плоскости). По этой причине данный тип подвески не применяется на спортивных автомобилях и автомобилях премиум-класса. Подвеска МакФерсон имеет следующее устройство: подрамник; поперечный рычаг; поворотный кулак; амортизаторная стойка; стабилизатор поперечной устойчивости. Схема подвески МакФерсон 1-шаровая опора 2-ступица 3-тормозной диск 4-защитный кожух 5-поворотный рычаг 6-нижняя опорная чашка 7-пружина подвески 8-защитный чехол телескопической стойки 9-буфер сжатия 10-верхняя опорная чашка 11-подшипник верхней опоры 12-верхняя опора стойки 13-гайка штока 14-шток 15-опора буфера сжатия 16-телескопическая стойка 17-гайка 18-эксцентриковый болт 19-поворотный кулак 20-вал привода переднего колеса 21-защитный чехол шарнира 22-наружный шарнир вала 23-нижний рычаг Подрамник является несущим элементом подвески. Он крепится к кузову автомобиля с помощью резинометаллических опор – сайлентблоков. Применение резинометаллических элементов в конструкции подвески позволяют уменьшить вибрации и снизить шум. На некоторых автомоблиях предусмотрено жесткое крепление подрамника к кузову. К подрамнику крепятся опоры поперечного рычага, стабилизатор поперечной устойчивости, устанавливается рулевой механизм. На подрамник с двух сторон крепятся поперечные рычаги (рычаг правого и левого колес). Каждый поперечный рычаг соединяется с подрамником в двух местах с помощью резиновых втулок. Двойное крепление рычага обеспечивает необходимую жесткость в продольном направлении. Другим концом поперечный рычаг через шаровую опору соединен с поворотным кулаком. Поворотный кулак обеспечивает поворот колеса за счет шарнирного соединения с рулевой тягой. В верхней части поворотный кулак поворотный кулак закреплен на амортизаторной стойке с помощью клеммового соединения. В нижней части кулак соединен с поперечным рычагом. Дополнительным рычагом выступает наконечник рулевого механизма, соединенный с поворотным кулаком шаровой опорой. В поворотном кулаке размещены подшипниковый узел и тормозной суппорт. Подшипниковый узел включает ступицу колеса и ступичный подшипник. Амортизаторная стойка объединяет упругий элемент (пружину) и амортизатор. Металлическая пружина расположена соосно с амортизатором и закреплена на стойке. Для изменения линейной характеристики упругости пружины соосно с ней устанавливается буфер сжатия. В нижней части стойка соединена с поворотным кулаком. В верхней части она крепится к брызговику крыла с помощью резиновой втулки. Стабилизатор поперечной устойчивости обеспечивает снижение боковых кренов автомобиля. Стабилизатор устанавливается в подрамнике посредством двух опор. Концы стабилизатора соединены с амортизаторными стойками с помощью соединительных штанг (стоек) с шарнирными наконечниками. --------------------------------------------------------------------------------------------------------------------------------------------------------------------- Многорычажная подвеска (Multilink) в настоящее время является самым распространенным видом подвески, который применяется на задней оси легкового автомобиля. Многорычажная подвеска устанавливается как на переднеприводные, так и на заднеприводные автомобили. Данный тип подвески используется также на передней оси автомобиля, например на некоторых моделях автомобилей Audi. Основными преимуществами многорычажной подвески, обусловленными ее конструкцией, являются высокая плавность хода, низкий уровень шума, лучшая управляемость. Вместе с тем, подвеска достаточно дорога и сложна в изготовлении и установке. Многорычажная подвеска является дальнейшим развитием подвески на двойных поперечных рычагах. Если каждый из поперечных рычагов разделить на две части (два отдельных рычага) получиться простейшая многорычажная подвеска. В многорычажной подвеске для крепления ступицы колеса используется не менее четырех рычагов, что обеспечивает независимую продольную и поперечную регулировки колеса. В современных конструкциях многорычажных подвесок наряду с поперечными рычагами используются продольные рычаги. Многорычажная подвеска имеет следующее устройство: подрамник; поперечные рычаги; продольный рычаг; ступичная опора; амортизатор; пружина; стабилизатор поперечной устойчивости. Схема многорычажной подвески Схема подготовлена по материалам Volkswagen AG1-подрамник 2-стабилизатор поперечной устойчивости 3-стойка стабилизатора поперечной устойчивости 4-продолный рычаг 5-ступица колеса 6-верхний поперечный рычаг 7-передний нижний поперечный рычаг 8-задний нижний поперечный рычаг 9-корпус опоры колеса 10-амортизатор 11-винтовая пружина 12-узел регулировки схождении Подрамник является несущим элементом подвески. К подрамнику через резинометаллические втулки крепятся поперечные рычаги. Поперечные рычаги соединены со ступичной опорой и обеспечивают ее положение в поперечной плоскости. В конструкции подвески может использоваться от трех до пяти поперечных рычагов. Стандартная конструкция многорычажной подвески включает три поперечных рычага: верхний; передний нижний; задний нижний. Верхний рычаг служит для передачи поперечных усилий и связывает корпус опоры колеса с подрамником. Передний нижний рычаг определяет схождение колеса. Задний нижний рычагвоспринимает вес кузова, который передается на рычаг через пружину. Продольный рычаг выполняет функцию ведения колеса в продольном направлении. Продольный рычаг с помощью опоры крепится к кузову автомобиля. С другой стороны рычаг соединен со ступичной опорой. На каждое из колес приходится свой продольный рычаг. Ступичная опора (корпус опоры колеса) является основанием для размещения ступичного подшипника и крепления колеса. Подшипник закрепляется на опоре болтом. Для восприятия нагрузок в подвеске установлена винтовая пружина. Пружина опирается на задний нижний поперечный рычаг. Амортизатор обычно расположен отдельно от пружины. Он соединен со ступичной опорой. В конструкции многорычажной подвески используется стабилизатор поперечной устойчивости, который снижает крены кузова автомобиля при прохождении поворотов и обеспечивает необходимое сцепление задних колес с дорогой. Штанга стабилизатора закрепляется с помощью резиновых опор на подрамнике. Специальные тяги обеспечивают соединение штанги со ступичными опорами. --------------------------------------------------------------------------------------------------------------------------------------------------------- Материал для темы взял тут- http://systemsauto.ru/index.html Добавил видео но, так как видео в одном сообщении работает только 2-а, разбил по отдельным сообщениям... Изменено 19 апреля, 2013 пользователем Максимус LiMe-lip, bemba74, poKIMOnchik и 2 других 5 Цитата Ссылка на комментарий Поделиться на другие сайты Поделиться
Maximus Опубликовано 19 апреля, 2013 Автор Жалоба Поделиться Опубликовано 19 апреля, 2013 Торсионная подвеска – вид подвески, в которой в качестве упругого элемента используется торсион. Торсион представляет собой металлический упругий элемент, работающий на скручивание. Как правило, это металлический стержень круглого сечения со шлицевым соединением на концах. Торсион может состоять из набора пластин, стержней, балки определенного сечения.Конструктивно торсион одним концом крепиться к кузову или раме автомобиля, а другим – к направляющему элементу – рычагу. При перемещении колес торсион закручивается, чем достигается упругая связь между колесом и кузовом.Особенностью торсионов является вращение только в одну сторону – в направлении скручивания. Другой особенностью является то, что торсион может использоваться для регулировки высоты кузова.Торсионы применяются в различных видах независимых подвесок:-подвеске на двойных поперечных рычагах;-подвеске на продольных рычагах;-подвеске со связанными продольными рычагами (торсионная балка).Схема торсионной подвескиНа примере передней подвески автомобиля Hummer H2 Схема подготовлена по материалам сайта 4wheeloffroad.com ступица колеса; приводной вал; нижний поперечный рычаг; верхний поперечный рычаг; амортизатор; стабилизатор поперечной устойчивости; передний дифференциал; продольный торсион; подрамник В торсионной подвеске на двойных поперечных рычагах торсионы располагаются параллельно кузову, благодаря чему их длину, а соответственно упругие свойства можно регулировать в широком пределе. Один конец торсиона крепиться к нижнему поперечному рычагу (реже к верхнему рычагу), другой конец – к раме автомобиля. Данная конструкция торсионной подвески используется в качестве передней подвески легковых автомобилей повышенной проходимости – некоторых моделей американских и японских внедорожников.В торсионной подвеске на продольных рычагах торсионы соединены с продольными рычагами и, соответственно, расположены поперек кузова. Данная конструкция торсионной подвески применяется в качестве задней подвески некоторых моделей легковых автомобилей малого класса.Схема торсионной балки На примере задней подвески автомобиля Volkswagen Polo Схема подготовлена по материалам Volkswagen AG резинометаллический шарнир (сайлент-блок); амортизатор; поперечная балка (торсионная балка); витая пружина; ступица колеса; продольный рычаг Особое место в конструкциях торсионных подвесок занимает т.н.торсионная балка или подвеска со связанными продольными рычагами. Направляющим устройством данной подвески являются два продольных рычага, жестко соединенных между собой балкой. Продольные рычаги с одной стороны крепятся к кузову, с другой – к ступицам колес. Балка имеет U-образное сечение, поэтому обладает большой жесткостью на изгиб и малой на кручение. Это свойство позволяет колесам двигаться вверх-вниз независимо друг от друга.Торсионная балка в настоящее время широко применяется в качестве задней подвески переднеприводных автомобилей малого и среднего класса. Благодаря своей конструкции подвеска с торсионной балкой занимает промежуточное положение между зависимым и независимым типом подвесок, поэтому другое ее название полунезависимая подвеска. poKIMOnchik, bemba74 и greega 3 Цитата Ссылка на комментарий Поделиться на другие сайты Поделиться
Maximus Опубликовано 19 апреля, 2013 Автор Жалоба Поделиться Опубликовано 19 апреля, 2013 Зависимая подвеска представляет собой жесткую балку, связывающую между собой правое и левое колеса. В совокупности она образует неразрезной мост. Отличительной особенностью зависимой подвески является передача перемещения одного из колес в поперечной плоскости другому колесу (зависимость колес).В настоящее время зависимая подвеска применяется на некоторых моделях внедорожников, коммерческих автомобилях, а также малотоннажных грузовых автомобилях. Зависимая подвеска используется в основном в качестве задней подвески, реже – на передней оси автомобиля.Основными видами зависимой подвески являются:-подвеска на продольных рессорах;-подвеска с направляющими рычагами.Схема зависимой подвески на продольных рессорахНа примере задней подвески автомобиля Dodge Ram (2010) Схема подготовлена по материалам сайта www.fourwheeler.com рессора; хомут; балка моста; амортизатор; стремянка; эластичная опора; ступица колеса; качающаяся серьга Устройство зависимой подвески на продольных рессорах включает балку моста, подвешенную на двух продольных рессорах. Рессора состоит из одного или нескольких металлических листов овальной формы, скрепленных между собой. Соединение рессоры с балкой моста осуществляется с помощью специальных хомутов – стремянок. Концы рессоры крепятся к раме (несущему кузову) автомобиля посредством кронштейнов, один из которых (качающаяся серьга) имеет возможность продольного перемещения, другой (эластичная опора) снижает вибрации.Продольная рессора воспринимает усилия в вертикальном, продольном и боковом направлениях, а также тормозной и реактивный моменты. Поэтому в подвески она выполняет функции упругого элемента, направляющего элемента, а в некоторых случаях и гасящего устройства (гашение колебаний за счет трения между листами рессоры).Основным недостатком зависимой подвески на продольных рессорах является слабое противодействие боковым и продольным силам на больших скоростях, что приводит к смещению (уводу) моста и потере управляемости.Схема зависимой подвески с направляющими рычагамиНа примере задней подвески автомобиля Dodge Ram (2009) Схема подготовлена по материалам сайта www.fourwheeler.com витая пружина; верхний продолльный рычаг; нижний продольный рычаг; балка моста; амортизатор; ступица колеса; стабилизатор поперечной устойчивости; поперечный рычаг (тяга Панара) Данного недостатка лишеназависимая подвеска с направляющими рычагами. Самая распространенная схема данного вида зависимой подвески объединяет пять рычагов – четыре продольных и один поперечный. Рычаги одной стороной закреплены на балке моста, другой – на раме (несущем кузове) автомобиля.Рычаги обеспечивают восприятие вертикальных, продольных и боковых усилий. В качестве упругого элемента используется, как правило, витая пружина. Гасящее устройство – амортизатор.Поперечный рычаг препятствует смещению оси автомобиля от воздействия боковых сил. Рычаг носит собственное имя – тяга Панара. Конструктивно тяга Панара может быть выполнена сплошной или разрезной. Разрезная (регулируемая) тяга Панара, помимо основной функции, позволяет изменять положение (высоту) моста относительно кузова, путем регулирования длины.Тяга Панара в силу своей конструкции по разному работает при прохождении автомобилем правых и левых поворотов, чем создает определенные проблемы с управляемостью. Более совершенными устройствами, обеспечивающими равномерное противодействие боковым силам в зависимой подвеске, являются:-механизм Уатта;-механизм Скотта-Рассела.Механизм Уатта (в другой транскрипции - механизм Ватта) состоит из двух горизонтальных рычагов, шарнирно прикрепленных к концам вертикального рычага. Вертикальный рычаг, в свою очередь, закреплен в центре балки моста и имеет возможность вращения. Неравномерность движения в поворотах, присущая тяге Панара, в механизме Уатта компенсируется поворотом вертикального рычага.Механизм Скотта-Расселаобъединяет два рычага - длинный и короткий. Длинный рычаг одним концом шарнирно соединен с кузовом автомобиля, другим – с балкой моста. Короткий рычаг связывает среднюю часть длинного рычага с противоположным концом балки моста.Особенностью механизма Скотта-Рассела является возможность некоторого перемещения длинного рычага за счет эластичного крепления к балке моста, чем достигается улучшение управляемости и курсовой устойчивости.Схема подвески Де Дион Схема подготовлена по материалам сайта www.gtcars.ca амортизатор; витая пружина; приводной вал; тормозной диск; дифференциал, закрепленный на раме; задний рычаг; шлицевая муфта; поперечный рычаг; неразрезная балка; верхний рычаг Промежуточное положение между зависимой и независимой подвесками занимает подвеска Де Дион (по имени изобретателя графа Альбера де Диона). Конструктивно подвеска Де Дион включает подпружиненную неразрезную балку. При этом дифференциал жестко закреплен на раме (несущем кузове) и в состав моста не входит. Передача вращения на ведущие колеса осуществляется через качающиеся ведущие валы. Тормозные механизмы устанавливаются непосредственно на выходах дифференциала.При такой компоновке неподрессоренными остаются только ступицы колес и сами колеса, что способствует плавности хода и безопасность движения автомобиля. Ввиду высокой стоимости подвеска Де Дион применяется достаточно редко, в основном на спортивных автомобилях. poKIMOnchik 1 Цитата Ссылка на комментарий Поделиться на другие сайты Поделиться
Maximus Опубликовано 19 апреля, 2013 Автор Жалоба Поделиться Опубликовано 19 апреля, 2013 (изменено) Активная подвеска Подвеска современного автомобиля представляет собой компромисс между управляемостью, устойчивостью и комфортом. Жесткая подвеска обеспечивает минимальные крены, а значит лучшую управляемость и устойчивость. Мягкая подвеска отличается плавностью хода, но при маневрировании приводит к раскачке автомобиля, ухудшению управляемости и устойчивости. Поэтому многие автопроизводители разрабатывают и внедряют на свои автомобили различные конструкции активной подвески.Под термином «активная» понимается подвеска, параметры которой могут изменяться при эксплуатации. Электронная система управления в составе активной подвески позволяет изменять параметры автоматически. Конструкции активной подвески можно условно разделить по элементам подвески, параметры которой изменяются:Элемент подвески.....................................................Изменяемый параметрАмортизатор..................................................................степень демпфирования; жесткость подвескиУпругий элемент...........................................................жесткость подвески; высота кузоваСтабилизатор поперечной устойчивости...................жесткость стабилизатораРычаги............................................................................длина рычага; схождение колесВ ряде конструкций активной подвески используется воздействие на несколько элементов.Наиболее широко в конструкции активной подвески используются амортизаторы с регулируемой степенью демпфирования. Данный вид активной подвески имеет собственное устоявшееся название – адаптивная подвеска. Такую подвеску еще называют полуактивной подвеской, т.к. в ее конструкции не используются дополнительные приводы.При регулировании демпфирующей способности амортизатора реализуется два подхода: использование электромагнитных клапанов в амортизаторной стойке и применение специальной магнитно-реологической жидкости для наполнения амортизатора. Электроника позволяет регулировать степень демпфирования индивидуально для каждого амортизатора, чем достигаются различные характеристики жесткости подвески (высокая степень демпфирования - жесткая подвеска, низкая степень демпфирования - мягкая подвеска). Известными конструкциями адаптивной подвески являются:-Adaptive Chassis Control, DCC (Volkswagen);-Adaptive Damping System, ADS (Mersedes-Benz);-Adaptive Variable Suspension, AVS (Toyota);-Continuous Damping Control, CDS (Opel);-Electronic Damper Control, EDC (BMW).Активная подвеска с регулируемыми упругими элементамиболее универсальна, т.к. позволяет поддерживать определенную высоту кузова и жесткость подвески. С другой стороны такая подвеска имеет более сложную конструкцию (используется отдельный привод для регулирования упругих элементов), поэтому и стоимость ее намного выше. В качестве упругого элемента в активной подвеске используются традиционные пружины, а также пневматические и гидропневматические упругие элементы.В подвеске Active Body Control, ABC от Mercedes-Benz жесткость пружины изменяется с помощью гидравлического привода, который обеспечивает нагнетание масла в амортизаторную стойку под высоким давлением. На пружину, установленную соосно с амортизатором, воздействует гидравлическая жидкость гидроцилиндра.Управление гидроцилиндрами амортизаторных стоек осуществляет электронная система, которая включает 13 различных датчиков (положения кузова, продольного, поперечного и вертикального ускорения, давления), блока управления и исполнительных устройств - электромагнитных клапанов. Система АВС практически полностью исключает крены кузова при различных условиях движения (поворот, ускорение, торможение), а также регулирует положение кузова по высоте (понижает автомобиль на 11 мм при скорости свыше 60 км/ч).Пневматический упругий элемент составляет основу пневматической подвески. Он обеспечивает регулирование высоты кузова относительно поверхности дороги. Давление в пневматических упругих элементах создается с помощью пневматического привода, включающего электродвигатель с компрессором. Для изменения жесткости подвески используются амортизаторы с регулируемой степенью демпфирования. Такой подход реализован в пневматической подвеске Airmatic Dual Control от Mercedes-Benz, в которой применена адаптивная система Adaptive Damping System.Гидропневматические упругие элементы используются в гидропневматической подвеске, которая позволяет изменять жесткость и высоту кузова в зависимости от условий движения и желаний водителя. Работу подвески обеспечивает гидравлический привод высокого давления. Управление гидросистемой производится с помощью электромагнитных клапанов. Современной конструкцией гидропневматической подвески является система Hydractive третьего поколения, которая устанавливается на автомобили Citroёn.Отдельную группу составляют конструкции активной подвески, в которых изменяется жесткость стабилизатора поперечной устойчивости. При прямолинейном движении стабилизатор поперечной устойчивости выключается, за счет чего увеличиваются ходы подвески, лучше обрабатываются неровности и тем самым достигается высокая плавность и комфортность передвижения. При повороте или резком изменении направления движения жесткость стабилизаторов увеличивается пропорционально воздействующим силам, и предотвращаются крены кузова. Известными конструкциями активной стабилизации подвески являются:Dynamic Drive от BMW;Kinetic Dynamic Suspension System, KDSS от Toyota.Одну из наиболее интересных конструкций активной подвески предлагает на своих автомобилях компания Hyundai. Система активного управления геометрией подвески (Active Geometry Control Suspension, AGCS) позволяет изменять длину рычагов подвески, за счет чего изменяется схождение задних колес. Для изменения длины рычага используется электрический привод. При прямолинейном движении и маневрировании на небольшой скорости система устанавливает минимальное схождение. Поворот на высокой скорости, активное перестроение из ряда в ряд сопровождается увеличением схождения задних колес. Автомобиль получает дополнительную устойчивость и лучшую управляемость. Система AGCS взаимодействует с системой курсовой устойчивости. Изменено 19 апреля, 2013 пользователем Максимус poKIMOnchik, greega и Admin 3 Цитата Ссылка на комментарий Поделиться на другие сайты Поделиться
Maximus Опубликовано 19 апреля, 2013 Автор Жалоба Поделиться Опубликовано 19 апреля, 2013 Адаптивная подвеска (другое наименование полуактивная подвеска) – разновидность активной подвески, в которой степень демпфирования амортизаторов изменяется в зависимости от состояния дорожного покрытия, параметров движения и запросов водителя. Под степенью демпфирования понимается быстрота затухания колебаний, которая зависит от сопротивления амортизаторов и величины подрессоренных масс. В современных конструкциях адаптивной подвески используется два способа регулирования степени демпфирования амортизаторов:-с помощью электромагнитных клапанов;-с помощью магнитно-реологической жидкости.При регулировании с помощью электромагнитного регулировочного клапана изменяется его проходное сечение в зависимости от величины воздействующего тока. Чем больше ток, тем меньше проходное сечение клапана и соответственно выше степень демпфирования амортизатора (жесткая подвеска). С другой стороны, чем меньше ток, тем больше проходное сечение клапана, ниже степень демпфирования (мягкая подвеска). Регулировочный клапан устанавливается на каждый амортизатор и может располагаться внутри или снаружи амортизатора. Амортизаторы с электромагнитными регулировочными клапанами используются в конструкции следующих адаптивных подвесок:-Adaptive Chassis Control, DCC от Volkswagen;-Adaptive Damping System, ADS от Mersedes-Benz (в составе пневматической подвески Airmatic Dual Control);-Adaptive Variable Suspension, AVS от Toyota;-Continuous Damping Control, CDS от Opel;Electronic Damper Control, EDC от BMW (в составе активной подвески Adaptive Drive).Магнитно-реологическая жидкость включает металлические частицы, которые при воздействии магнитного поля выстраиваются вдоль его линий. В амортизаторе, заполненном магнитно-реологической жидкостью, отсутствуют традиционные клапаны. Вместо них в поршне имеются каналы, через которые свободно проходит жидкость. В поршень также встроены электромагнитные катушки. При подаче на катушки напряжения частицы магнитно-реологической жидкости выстраиваются по линиям магнитного поля и создают сопротивление движению жидкости по каналам, чем достигается увеличение степени демпфирования (жесткости подвески). Магнитно-реологическая жидкость используется в конструкции адаптивной подвески значительно реже:-MagneRide от General Motors (автомобили Cadillac, Chevrolet);-Magnetic Ride от Audi.Регулирование степени демпфирования амортизаторов обеспечивает электронная система управления, которая включает входные устройства, блок управления и исполнительные устройства.В работе системы управления адаптивной подвески используются следующие входные устройства:переключатель режимов работы;-датчики дорожного просвета;-датчики ускорения кузова.С помощью переключателя режимов работы производится настройка степени демпфирования адаптивной подвески. Датчик дорожного просвета фиксирует величину хода подвески на сжатие и на отбой. Датчик ускорения кузова определяет ускорение кузова автомобиля в вертикальной плоскости. Количество и номенклатура датчиков различается в зависимости от конструкции адаптивной подвески. Например, в подвеске DCC от Volkswagen устанавливается два датчика дорожного просвета и два датчика ускорения кузова впереди автомобиля и по одному - сзади.Сигналы от датчиков поступают в электронный блок управления, где в соответствии с заложенной программой происходит их обработка и формирование управляющих сигналов на исполнительные устройства – регулировочные электромагнитные клапаны или электромагнитные катушки. В работе блок управления адаптивной подвески взаимодействует (использует информацию) с электронными блоками различны систем автомобиля: усилителя рулевого управления, системы управления двигателем,автоматической коробки передач, систем ABS, ESP, ACC.В конструкции адаптивной подвески обычно предусмотрено три режима работы:-нормальный;-спортивный;-комфортныйРежимы выбираются водителем в зависимости от потребности. В каждом режиме осуществляется автоматическое регулирование степени демпфирования амортизаторов в пределах установленной параметрической характеристики.Показания датчиков ускорения кузова характеризуют качество дорожного покрытия. Чем больше неровностей на дороге, тем активнее раскачивается кузов автомобиля. В соответствии с этим система управления настраивает степень демпфирования амортизаторов.Датчики дорожного просвета отслеживают текущую ситуацию при движении автомобиля: торможение, ускорение, поворот. При торможении передняя часть автомобиля опускается ниже задней, при ускорении – наоборот. Для обеспечения горизонтального положения кузова регулируемая степень демпфирования передних и задних амортизаторов будет различаться. При повороте автомобиля вследствие инерционной силы одна из сторон всегда оказывается выше другой. В данном случае система управления адаптивной подвески раздельно регулирует правые и левые амортизаторы, чем достигается устойчивость при повороте.Таким образом, на основании сигналов датчиков блок управления формирует управляющие сигналы для каждого амортизатора в отдельности, что позволяет обеспечить максимальную комфортность и безопасность для каждого из выбранных режимов. Admin, poKIMOnchik и greega 3 Цитата Ссылка на комментарий Поделиться на другие сайты Поделиться
Maximus Опубликовано 19 апреля, 2013 Автор Жалоба Поделиться Опубликовано 19 апреля, 2013 Гидропневматическая подвеска – вид подвески, в котором используются гидропневматические упругие элементы. Впервые гидропневматическая подвеска была применена на автомобилях Citroen в 1954 году. Современной конструкцией гидропневматической подвески является подвеска Hydractive, в которой реализованы ее лучшие качества. В настоящее время устанавливается гидропневматическая подвеска Hydractive третьего поколения. Гидропневматическая подвеска применялась по лицензии на автомобилях Mercedes, Rolls-Royce и др. В конструкции современной гидропневматической подвески предусмотрено автоматическое изменение характеристик, т.е. она является активной подвеской. Основными преимуществами гидропневматической подвески являются высокая плавность хода, возможность регулировки положения кузова относительно дорожного покрытия, эффективное гашение колебаний, адаптация к стилю вождения конкретного человека. Сложность и высокая стоимость являются сдерживающими факторами широкого применения данного типа подвески. Гидропневматическая подвеска используется совместно с другими типами подвесок. Так, на автомобиле Citroen C5 гидропневматическая подвеска на передней оси интегрирована с подвеской МакФерсон, а на задней оси с многорычажной подвеской. Гидропневматическая подвеска Hydractive История гидравлической подвески Hydractive насчитывает три поколения: -Hydractive 1 - с 1989 года;-Hydractive 2 - с 1993 года; -Hydractive 3 - с 2000 года. Развитие гидропневматической подвески Hydractive осуществляется в двух направлениях - повышение надежности и расширение функциональных возможностей. Устройство гидропневматической подвески Hydractive рассмотрено на примере подвески третьего поколения. Подвеска Hydractive 3 включает следующие конструктивные элементы:-гидроэлектронный блок; -резервуар рабочей жидкости -стойки передней подвески; -задние гидропневматические цилиндры; -регуляторы жесткости; -гидропроводы; -система управления. Схема гидропневматической подвески Hydractive 3 Схема подготовлена по материалам Citroёn1-гидроэлектронный блок;2-передняя стойка; 3-передний регулятор жесткости; 4-передний датчик положения кузова; 5-задний гидропневматический цилиндр; 6-задний регулятор жесткости; 7-задний датчик положения кузова; 8-встроенный интерфейс; 9-датчик рулевого колеса; 10-резервуар рабочей жидкости; 11-педаль газа и педаль тормоза Гидроэлектронный блок, резервуар рабочей жидкости, передние стойки, задние цилиндры, регуляторы жесткости образуютгидравлическую систему подвески. В гидравлическую систему также включен контур гидравлического усилителя рулевого управления. В ранних версиях подвески гидравлическая система объединяла контур тормозной системы автомобиля. В подвеске Hydractive 3 тормозная система независима. Гидроэлектронный блок (гидротроник) обеспечивает необходимое количество и давление рабочей жидкости в гидравлической системе подвески. Он объединяет электродвигатель, аксиально-поршневой насос, электронный блок управления, электромагнитные клапаны регулирования высоты кузова, запорный клапан (предотвращает опускание кузова в нерабочем состоянии), предохранительный клапан. Электронный блок управления и электромагнитные клапаны являются элементами системы управления подвески. Резервуар рабочей жидкости располагается непосредственно над гидроэлектронным блоком. В подвеске Hydractive 3 используется рабочая жидкость LDS (оранжевый цвет), пришедшая на смену жидкости LHM (зеленый цвет). Стойка передней подвески объединяет гидроцилиндр и гидропневматический упругий элемент, между которыми расположен амортизаторный клапан, обеспечивающий гашений колебаний кузова. Гидропневматический упругий элемент представляет собой металлическую сферу, которая внутри разделена эластичной многослойной мембраной. Над мембраной находится сжатый газ – азот, под мембраной – специальная жидкость. Жидкость передает давление в системе, а газ выступает упругим элементом. На подвеске Hydractive 3+ устанавливается по одному упругому элементу на каждое колесо и по одной дополнительной сфере на каждую ось. Применение дополнительных упругих элементов значительно расширяет параметры регулирования жесткости подвески. Современные сферы имеют серый цвет и сохраняют работоспособность в пределе 200000 км пробега. Гидравлические цилиндры предназначены для нагнетания жидкости в упругие элементы и регулирования высоты положения кузова относительно дорожного покрытия. Гидроцилиндр снабжен поршнем, шток которого соединен с соответствующим рычагом подвески. Задние гидропневматические цилиндры по конструкции аналогичны передним стойкам, но расположены под углом к горизонтальной плоскости. Регулятор жесткости служит для изменения жесткости подвески. Он включает электромагнитный клапан регулирования жесткости, золотник, два дополнительных амортизаторных клапана. На регуляторе жесткости закреплена дополнительная сфера. Регулятор жесткости устанавливается на передней и задней подвеске. В мягком режиме подвески регулятор жесткости объединяет все гидропневматические упругие элементы между собой, при котором достигается максимальный объем газа. Электромагнитный клапан при этом обесточен. При подаче напряжения на электромагнитный клапан включается жесткий режим подвески, при котором стойки, задние цилиндры и дополнительные сферы изолируются друг от друга. Система управления гидропневматической подвески включает входные устройства, электронный блок управления и исполнительные устройства. К входным устройствам относятся входные датчики и переключатель режимов работы. Входные датчики преобразуют соответствующие характеристики в электрические сигналы. В гидропневматической подвеске Hydractive 3 используются датчики положения кузова по высоте и угловой датчик рулевого колеса.Датчик положения кузова по высоте представляет информацию о средней высоте кузова. На автомобили Citroen устанавливается 2 или 4 таких датчика. Датчик угла поворота рулевого колеса измеряет направление и скорость вращения рулевого колеса.Переключатель режимов работы обеспечивает ручное (принудительное) регулирование высоты кузова и жесткости гидропневматической подвески. Электронный блок управления принимает сигналы от входных устройств. обрабатывает их в соответствии с заложенной программой и формирует управляющие воздействия на исполнительные устройства. В своей работе электронный блок управления взаимодействует с системой управления двигателем,антиблокировочной системой тормозов. К исполнительным устройствам системы управления подвески Hydractive 3 относятся: -электродвигатель насоса; -электромагнитные клапаны регулирования высоты; -электромагнитные клапаны регулирования жесткости; -электрический корректор фар. Электродвигатель под управлением изменяет скорость вращения, соответственно изменяется производительность насоса и давление в системе. В подвеске Hydractive 3 используется 4 электромагнитных клапана регулирования высоты - два на переднюю подвеску (впускной и выпускной) и два на заднюю подвеску (впускной и выпускной). Электромагнитные клапаны регулирования жесткости расположены в регуляторах жесткости. Гидропневматическая подвеска Hydractive 3 обеспечивает: автоматическое регулирование дорожного просвета; автоматическое регулирование жесткости; принудительное изменение дорожного просвета и жесткости. Автоматическое регулирование дорожного просветаосуществляется в зависимости от скорости движения автомобиля, качества дорожного покрытия и стиля вождения конкретного человека. При движении по автомагистрали со скоростью более 110 км/ч высота кузова автоматически снижается на 15 мм. При плохих дорожных условиях и скорости ниже 60 км/ч клиренс автоматически увеличивается на 20 мм. В автомобиле автоматически поддерживается определенная высота кузова независимо от нагрузки (загрузки). Высота подъема кузова определяется объемом специальной жидкости, циркулируемой в контуре системы. Объем жидкости дозируется регулятором положения кузова. Работа гидропневматической подвески обеспечивает сохранение заданного уровня пола кузова при перемещении колес по неровному дорожному покрытию. Автоматическое регулирование жесткости подвескиреализовано в расширенной версии подвески Hydractive 3+. Изменение режимов жесткости производится в зависимости от характера движения (ускорение, торможение, движение по прямой, в поворотах). Для принятия решения используются следующие параметры: скорость автомобиля, продольное и поперечное ускорение, изменение высоты. угол и скорость поворота рулевого колеса, изменение крутящего момента, изменение давления в тормозной системе. В зависимости от условий система автоматически воздействует на электромагнитный клапан регулятора жесткости и приводит подвеску в жесткий или мягкий режим. Изменение жесткости осуществляется как для отдельного упругого элемента (при повороте автомобиля), так и всей системы (при прямолинейном движении). В конструкции гидропневматической подвески предусмотренопринудительное (ручное) изменение дорожного просвета, что в конкретных условиях обеспечивает преодоление препятствий, а также удобство погрузки (выгрузки) и уборки автомобиля. В расширенной версии подвески Hydractive 3+ вручную можно изменять и жесткость подвески. greega и Admin 2 Цитата Ссылка на комментарий Поделиться на другие сайты Поделиться
Maximus Опубликовано 19 апреля, 2013 Автор Жалоба Поделиться Опубликовано 19 апреля, 2013 Пневматическая подвеска (обиходное название –пневмоподвеска) – вид подвески, обеспечивающий регулирование уровня кузова относительно дороги за счет применения пневматических упругих элементов. В настоящее время пневматическая подвеска устанавливается в качестве опции на некоторых моделях автомобилей бизнес-класса и больших внедорожниках (например, Volkswagen Touareg, Audi Q7).По своей сути пневмоподвеска не является отдельным видом подвески автомобиля, т.к. реализована со многими конструкциями подвесок (МакФерсон, многорычажная подвеска и др.). В настоящее время пневмоподвеску используют на своих автомобилях многие автопроизводители: Audi, Bentley, BMW, Lexus, GM, Ford, Land Rover, Mercedes-Benz, SsangYong, Subaru, Volkswagen. Некоторые конструкции подвесок имеют собственные названия, например, Airmatic Dual Control от Mercedes-Benz.Основными преимуществами пневматической подвески являются комфортабельность, геометрическая проходимость и безопасность автомобиля. Пневмоподвеска, как правило, применяется в комбинации с автоматически регулируемыми амортизаторами. Такая конструкция называется адаптивная пневмоподвеска.Пневматическая подвеска имеет следующее общее устройство:пневматические упругие элементы на каждое колесо;модуль подачи воздуха;ресивер;регулируемые амортизаторы (в адаптивной подвеске);система управления.Пневматический упругий элемент выполняет основную функцию подвески – поддержание определенного уровня кузова автомобиля. Это достигается путем изменения давления и соответствующего ему объема воздуха в упругих элементах.Схема пневматического упругого элементаСхема подготовлена по материалам Volkswagen AG 1-корпус2-газовая полость амортизатора3-манжета4-двухтрубный газонаполненный амортизатор5-компенсационная полость амортизатора6-поршень7-направляющая корпуса8-воздушная полость9-Пневматический упругий элемент состоит из корпуса с направляющей, манжеты и поршня. Конструктивно пневматический упругий элемент может изготавливаться со встроенным амортизатором или устанавливаться отдельно. Упругий элемент, объединенный с амортизатором, имеет название пневматическая стойка (по аналогии с амортизаторной стойкой подвески МакФерсон).Манжета пневматического упругого элемента изготавливается из прочного многослойного эластомера. В некоторых конструкциях упругих элементов применяется дополнительные пневмоаккумуляторы. Для поддержания давления при утечке воздуха в упругом элементе может устанавливатьсяклапан остаточного давления.Модуль подачи воздуха служит для питания упругих элементов воздухом. Он включает электродвигатель, компрессор и осушитель воздуха. Конструктивно в модуль включен блок электромагнитных клапанов системы управления подвеской.Ресивер представляет собой резервуар для воздуха и обеспечивает регулирование дорожного просвета при движении на небольшой скорости без включения компрессора, а также корректировку положения кузова на стоянке.Конструкция и работа элементов адаптивной подвески рассмотрена в отдельной статье.Модуль подачи воздуха и пневматические стойки образуют пневматическую систему подвески. Система может быть открытой или закрытой (замкнутой). Предпочтительной является замкнутая пневматическая система, обеспечивающая минимальные потери воздуха, а значит экономию энергии на его создание.Создание и регулирование давления в пневматической системе подвески осуществляется с помощью электронной системы управления, которая включает входные датчики, блок управления и исполнительные устройства.К входным датчикам относятся:-переключатель режимов ;-датчики уровня кузова;-датчики ускорения кузова;-датчик температуры компрессора;-датчик давления в системе.С помощью переключателя на панели приборов осуществляется ручное регулирование уровня кузова. Датчики отслеживают параметры работы системы и преобразуют их в электрические сигналы.Блок управления преобразует электрические сигналы входных датчиков в управляющие воздействия на исполнительные устройства. В своей работе блок управления взаимодействует с блоками системы управления двигателем, системы курсовой устойчивости.В системе управления пневматической подвески используются следующие исполнительные устройства:-клапаны пневматических упругих элементов (создание давления);-выпускной клапан (сброс давления);-переключающий клапан (поддержание давления в ресивере)-реле включения компрессора.Конструктивно все клапаны сосредоточены в блоке электромагнитных клапанов, расположенном в модуле подачи воздуха.Принцип работы пневматической подвескиВ пневматической подвеске реализовано, как правило, три алгоритма управления: автоматическое поддержание уровня кузова; принудительное изменение уровня кузова; автоматическое изменение уровня кузова в зависимости от скорости движения.Автоматическое поддержание определенного уровня кузовав пневматической подвеске осуществляется независимо от степени загруженности автомобиля. Датчики уровня кузова постоянно измеряют расстояние от колес до кузова. Результаты измерений сравниваются с заданной величиной. При расхождении показаний электронный блок управления задействует необходимые исполнительные устройства: клапаны упругих элементов для подъема, выпускной клапан для опускания подвески.Принудительное изменение высоты кузова обычно предусматривает три уровня: номинальный, повышенный и пониженный. Номинальный уровень используется для передвижения по обычным дорогам со скоростью до 100 км/ч. Пониженный уровень применяется для высокоскоростного движения. Повышенный уровень нужен для передвижения вне дорог и реализуется на скорости до 40 км/ч. Уровни кузова устанавливаются водителем с помощью переключателя. В конструкции пневмоподвески больших внедорожников предусмотрен дополнительный уровень для посадки пассажиров и погрузки багажа, который реализуется на неподвижном автомобиле.Автоматическое изменение уровня кузова в зависимости от скорости обеспечивает устойчивость автомобиля в движении. При увеличении скорости программа управления подвеской переводит уровень кузова последовательно от повышенного к номинальному и далее, с ростом скорости, к пониженному. При снижении скорости система переводит положение кузова из пониженного в номинальное.Применение амортизаторов с регулируемой степенью демпфирования значительно расширяет характеристики пневматической подвески, позволяя помимо высоты кузова изменять жесткость подвески в зависимости от условий движения. greega 1 Цитата Ссылка на комментарий Поделиться на другие сайты Поделиться
Maximus Опубликовано 19 апреля, 2013 Автор Жалоба Поделиться Опубликовано 19 апреля, 2013 Стабилизатор поперечной устойчивости При повороте центробежная сила наклоняет автомобиль, со стороны наружных колес увеличивается нагрузка, со стороны внутренних – уменьшается и, как следствие, наблюдается крен и раскачивание кузова. Все это может привести к опрокидыванию автомобиля. Для уменьшения кренов в поворотах применяется стабилизатор поперечной устойчивости.[/size] Стабилизатор поперечной устойчивости является частью автомобильной подвески, соединяющей противоположные колеса с помощью упругого элемента торсионного типа (работает на скручивание). В настоящее время стабилизатор поперечной устойчивости обязательный элемент различных видов независимой подвески легковых автомобилей. Стабилизатор устанавливается как на передней, так и на задней оси автомобиля. В легковых автомобилях, использующих в качестве задней подвески торсионную балку, стабилизатор поперечной устойчивости не устанавливается. Его функции выполняет сама подвеска. Конструктивно стабилизатор поперечной устойчивости представляет собой стержень (штангу) круглого сечения, имеющий П-образную форму. Стабилизатор изготавливается из пружинной стали. Он располагается поперек кузова автомобиля и крепится к нему в двух местах с помощью резиновых втулок и хомутов. Втулки позволяют стабилизатору вращаться. Стабилизатор имеет, как правило, сложную форму, которая учитывает положение узлов и агрегатов автомобиля, расположенных под днищем кузова. Концы стабилизатора поперечной устойчивости шарнирно соединяются с элементами подвески автомобиля – рычагами (многорычажная подвеска, подвеска на двойных поперечных рычагах), амортизаторными стойками (подвеска McPherson). Соединение стабилизатора с подвеской может быть как непосредственным, так и с помощью двух тяг (стоек). Наибольшее распространение получило соединение с помощью тяг. Работа стабилизатора поперечной устойчивости основана на перераспределении нагрузки между упругими элементами подвески. При боковом крене (поперечных угловых колебаниях) концы стабилизатора (тяги) перемещаются в разные стороны (один поднимается, другой опускается). Средняя часть стабилизатора закручивается. Со стороны крена стабилизатор пытается как–бы приподнять кузов, с другой – опустить. Чем больше крен кузова, тем сильнее сопротивление стабилизатора. Таким образом, обеспечивается выравнивание автомобиля по отношению к плоскости дороги. Помимо снижения крена, достигается улучшение сцепных свойств шин в повороте. Необходимо отметить, что в силу свое конструкции стабилизатор поперечной устойчивости не препятствует вертикальным и продольным угловым колебаниям подвески автомобиля. Так, при вертикальных колебаниях левое и правое колеса движутся вместе, а стабилизатор проворачивается во втулках. Эффективная работа стабилизатора поперечной устойчивости обеспечивается его жесткостью. Жесткость стабилизатора определяется свойствами материала, формой, геометрией крепления. Чем жестче стабилизатор, тем большую нагрузку он переносит с внешнего колеса и соответственно более крутые повороты может позволить автомобилю. Устанавливая на переднюю и заднюю ось автомобиля стабилизаторы разной жесткости можно изменять тяговые свойства на осях, тем самым достигать желаемый баланс управления (избыточная или недостаточная поворачиваемость автомобиля). При всех очевидных преимуществах стабилизатор поперечной устойчивости имеет ряд недостатков. Его применение приводит к частичной потере свойств независимой подвески – передаче ударов с одного колеса на другое, уменьшение хода подвески. В идеале при прямолинейном движении автомобиля стабилизатор поперечной устойчивости не нужен. Кардинально данную проблему решает адаптивная подвеска, позволяющая полностью отказаться от стабилизатора поперечной устойчивости. Дальше всех в этом вопросе пошел Mercedes-Benz, разработав и внедрив на своих автомобилях систему активного контроля кузова (Active Body Control, ABC). Электронная система АВС позволяет контролировать положение кузова, исключающее крены, в различных условиях движения, в том числе при повороте, ускорении и торможении. Стабилизатор поперечной устойчивости ухудшает проходимость внедорожников. При движении по бездорожью стабилизатор может привести к вывешиванию колеса и потере его контакта с дорогой. Борются с данной проблемой несколькими способами. Самый распространенный способ – использование в качестве стойки стабилизатора гидроцилиндра. В нормальном положении гидроцилиндр заперт, стабилизатор выполняет свои функции в полном объеме. При необходимости движения по бездорожью гидроцилиндр разблокируется с помощью кнопки на панели приборов, стабилизатор поперечной устойчивости отключается. Для предотвращения опрокидывания при достижении определенной скорости движения предусмотрено автоматическое включение стабилизатора (блокировка гидроцилиндра). Более сложную систему управления стабилизатором поперечной устойчивости предлагает фирма TRW. Система включает датчик бокового ускорения, блок управления, гидронасос и гидроцилиндры в качестве стоек стабилизатора. При прямолинейном движении гидронасос выключен, стабилизатор разблокирован, подвеска работает в комфортном режиме. При повороте блок управления включает насос, в гидроцилиндрах создается давление, стабилизатор поперечной устойчивости блокируется. Регулируя величину давления в гидроцилиндре, система управляет жесткостью стабилизатора в соответствии с режимом движения. Компания Toyota разработала иную систему управления стабилизаторами поперечной устойчивости, которую с 2004 года устанавливает на свои внедорожники. Система кинетической стабилизации подвески (Kinetic Dynamic Suspension System, KDSS) представляет собой замкнутый гидравлический контур, объединяющий два гидроцилиндра, гидроаккумулятор, клапаны, блок управления и датчики. В отличие от предыдущей системы гидроцилиндры в системе KDSS соединяют стабилизатор поперечной устойчивости с кузовом. При движении по шоссе клапаны закрыты, жидкость в системе не движется, поршни в гидроцилиндрах заблокированы, передний и задний стабилизаторы жестко связаны с кузовом и выполняют свои функции в полном объеме. Движение по неровной дороге приводит к частичному открытию клапанов, разблокированию гидроцилиндров, что приводит к снижению колебаний (тряски) кузова. На бездорожье жидкость свободно перемещается в системе, стабилизатор поперечной устойчивости полностью отключен. Admin 1 Цитата Ссылка на комментарий Поделиться на другие сайты Поделиться
Рустем Опубликовано 19 апреля, 2013 Жалоба Поделиться Опубликовано 19 апреля, 2013 Резино-жгутовая подвеска Цитата Ссылка на комментарий Поделиться на другие сайты Поделиться
Maximus Опубликовано 19 апреля, 2013 Автор Жалоба Поделиться Опубликовано 19 апреля, 2013 Еще одно видео Адаптивной подвески Нам есть к чему стремится!!! ))) Цитата Ссылка на комментарий Поделиться на другие сайты Поделиться
Рекомендуемые сообщения
Присоединяйтесь к обсуждению
Вы можете написать сейчас и зарегистрироваться позже. Если у вас есть аккаунт, авторизуйтесь, чтобы опубликовать от имени своего аккаунта.