Перейти к содержанию

greega

Модераторы
  • Постов

    2 406
  • Зарегистрирован

  • Посещение

  • Победитель дней

    66

Активность репутации

  1. Like
    greega отреагировална airband в пневмостойки мицубиси l200   
    давно хотел сделать стойки на эту машину и , наконец, желающий нашёлся
     
    давление около 9 кг. 
     
    из за формы поршня машина кренится в поворотах, на сильных кочках лучше, на мелких также как на пружинах




  2. Like
    greega отреагировална vladdych в Пневмоподвеска Джампер, Дукато, Боксёр   
    Дукато на пневме.

    Работа контроллера по смене режима.

  3. Like
    greega отреагировална эдгар в Пневмоподвеска на Газель (от Эдгара)   
    Поставил воздушную тормозную камеру на ручник. Как включатель использовал краник включения межосевого диффиринциала от КАМАЗ, маленький, надежный. Убрал уродливый рычаг ручника из салона.



  4. Like
    greega отреагировална эдгар в Пневмоподвеска на Газель (от Эдгара)   
    Покупалась машинка такой, стала другой.


  5. Like
    greega отреагировална эдгар в Пневмоподвеска на Газель (от Эдгара)   
    Делал Газель себе, не спеша, в свободное от работы время. 
    Как источник воздуха выбрал компрессор от Газ 66. К компрессору был приделана электромуфта от помпы газели. 
    Электромуфта была приделана с целью возможности отключать компрессор, чтобы не отбирал мошности двигателя. Испытания показали что электромуфта газелевская слабовата, когда компрессор набирает 6 атм. электромуфта начинает на малых оборотах пробуксовывать. Для системы 6 атм. при 40 литровом рессивере пока достаточно, но в планах поменять электромуфту.
     
    При выборе пневморессор были выбраны на зад 819N. перед 1Е06. Можно было 2В220 поставить, но выбор был сделан в пользу слив. 1Е06 на перед был выбран потому что машинка фермер, на перед нагрузка меньше. 
    Обе подушки в собранном виде не вставали на место по высоте. Пришлось их укорачивать на фото видно, примерно как укорачивание сканиевской подушки, с разницей в том что герметизацию верхней части подушки были применены специальные хомуты, эти хомуты применяются при соединении труб системы выхлопа в грузовиках. 
    Управление подушками регуляторами высоты от лиаз, на перед один регулятор на две подушки, зад на каждую подушку регулятор.
    Все пока сейчас на испытаниях, но предварительно можно сделать следующие выводы. Подушки намного мягче бубликов. При загрузке до 3 тонн подушки уровень держут, в планах больше 3 тонн не грузить. Уровень пола расходует воздуха немного, при 40 литровом рессивере по трассе стрелка манометра опускается на одну атмосферу.
    Если кому интересно могу выложить чертежи и ответить на вопросы.





  6. Downvote
    greega получил реакцию от Maxmk в Влагоуловитель   
    Не, ну тут конечно не поспоришь )))) Просто не будет выбрасывать таких концетрированных облаков... 
  7. Like
    greega отреагировална Axis в Обзор ресиверов объемом 4-6 л   
    Мож кому полезно будет:
    Извиняюсь за формат....
    как это читать
    Номер             Объем  длина х Диаметр, Давление, Порты, Материал.
    950 000 909 0 100 l, 930.5 x Ø 396, 10 bar. Ports: 4x M 22x1.5, Aluminium
    950 000 909 0 100 l, 930.5 x Ø 396, 10 bar. Ports: 4x M 22x1.5, Aluminium 950 000 910 0 120 l, 1095 x Ø 396, 10 bar. Ports: 4x M 22x1.5, Aluminium 950 001 003 0 0.6 l, 125 x Ø 101.6, 20 bar. Ports: 2× ½''-14 NPSI 950 060 003 0 60 l, 893 x Ø 310, 10.0 bar. Ports: 4x M 22x1.5 950 060 004 0 60 l, 580 x Ø 396, 10.0 bar. Ports: 4x M 22x1.5 950 060 009 0 60 l, 950 x Ø 300, 12.5 bar. Ports: 5x M 22x1.5 950 060 903 0 60 l, 591 x Ø 396, 10 bar. Ports: 4x M 22x1.5, Aluminium 950 080 002 0 80 l, 730 x Ø 396, 10.0 bar. Ports: 4x M 22x1.5 950 080 903 0 80 l, 750 x Ø 396, 11 bar. Ports: 4x M 22x1.5, Aluminium 950 100 002 0 100 l, 915 x Ø 396, 10 bar. Ports: 4x M 22x1.5 950 105 001 0 5 l, 341 x Ø 154, 20 bar. Ports: 4x M 22x1.5. with Mounting. Replacement for: 950 105 004 0 950 110 002 0 10 l, 615 x Ø 154, 20 bar. Ports: 3x M 22x1.5 950 315 003 0 15 l, 546 x Ø 206, 15.5 bar. Ports: 4x M 22x1.5 950 405 001 0 4.5 l, 185 x Ø 206, 15.5 bar. Ports: 4x M 22x1.5 950 406 001 0 6 l, 241 x Ø 206, 15.5 bar. Ports: 4x M 22x1.5 950 410 004 0 10 l, 368 x Ø 206, 15.5 bar. Ports: 4x M 22x1.5 950 410 902 0 10 l, 355 x Ø 206, 15.5 bar. Ports: 4x M 22x1.5 950 410 904 0 10 l, 354 x Ø 206, 15.5 bar. Ports: 4x M 22x1.5. Aluminium 950 415 005 0 15 l, 527 x Ø 206, 15.5 bar. Ports: 4x M 22x1.5 950 415 903 0 15 l, 535 x Ø 206, 15.5 bar. Ports: 4x M 22x1.5. Aluminium 950 420 003 0 20 l, 691 x Ø 206, 15.5 bar. Ports: 4x M 22x1.5. Replacement for: 950 420 010 0 950 420 903 0 20 l, 694 x Ø 206, 15.5 bar. Ports: 4x M 22x1.5, Aluminium 950 430 001 0 30 l, 991 x Ø 206, 15.5 bar. Ports: 4x M 22x1.5 950 515 003 0 15 l, 384 x Ø 246, 16.5 bar. Ports: 4x M 22x1.5 950 516 004 0 16 l, 411 x Ø 246, 15.5 bar. Ports: 4x M 22x1.5 950 520 003 0 20 l, 500 x Ø 246, 15.5 bar. Ports: 4x M 22x1.5. Replacement for: 950 520 004 0 950 520 903 0 20 l, 499.5 x Ø 246, 15.5 bar. Ports: 4x M 22x1.5, Aluminium 950 525 001 0 25 l, 601 x Ø 246, 15.5 bar. Ports: 4x M 22x1.5 950 527 005 0 27 l, 645 x Ø 246, 15.5 bar. Ports: 4x M 22x1.5 950 530 002 0 30 l, 709 x Ø 246, 15.5 bar. Ports: 4x M 22x1.5 950 530 903 0 30 l, 729.5 x Ø 246, 15.5 bar. Ports: 4x M 22x1.5, Aluminium 950 537 001 0 37 l, 862 x Ø 246, 15.5 bar. Ports: 4x M 22x1.5 950 540 001 0 40 l, 927 x Ø 246, 15.5 bar. Ports: 4x M 22x1.5 950 540 902 0 40 l, 956.5 x Ø 246, 15.5 bar. Ports: 4x M 22x1.5, Aluminium 950 560 002 0 60 l, 1365 x Ø 246, 15.5 bar. Ports: 4x M 22x1.5 950 560 901 0 60 l, 1385 x Ø 246, 15.5 bar. Ports: 4x M 22x1.5, Aluminium 950 620 005 0 20 l, 503 x Ø 246, 15.5 bar. Ports: 4x M 22x1.5 950 628 001 0 28 l, 657 x Ø 246, 15.5 bar. Ports: 4x M 22x1.5 950 630 005 0 30 l, 708 x Ø 250, 15.0 bar. Ports: 4x M 22x1.5 950 630 006 0 30 l, 718 x Ø 246, 15.5 bar. Ports: 4x M 22x1.5 950 720 005 0 20 l, 410 x Ø 276, 14.5 bar. Ports: 4x M 22x1.5 950 720 901 0 20 l, 424 x Ø 276, 15.5 bar. Ports: 4x M 22x1.5, Aluminium 950 722 002 0 22 l, 425 x Ø 276, 14.5 bar. Ports: 4x M 22x1.5 950 730 006 0 30 l, 590.5 x Ø 276, 14.5 bar. Ports: 5x M 22x1.5 950 730 007 0 30 l, 583 x Ø 276, 14.5 bar. Ports: 4x M 22x1.5 950 730 901 0 30 l, 603 x Ø 276, 15.5 bar. Ports: 4x M 22x1.5, Aluminium 950 740 002 0 40 l, 758 x Ø 276, 14.5 bar. Ports: 4x M 22x1.5 950 740 904 0 40 l, 770 x Ø 276, 12.5 bar. Ports: 4x M 22x1.5. Aluminium 950 740 906 0 40 l, 618 x Ø 310, 12.5 bar. Ports: 4x M 22x1.5 950 760 002 0 60 l, 1108 x Ø 276, 14.5 bar. Ports: 4x M 22x1.5 950 760 902 0 60 l, 116 x Ø 276, 15.5 bar. Ports: 4x M 22x1.5, Aluminium 950 836 001 0 36 l, 600 x Ø 300, 12.5 bar. Ports: 4x M 22x1.5 950 845 001 0 45 l, 714 x Ø 300, 10.0 bar. Ports: 5x M 22x1.5 950 845 002 0 45 l, 743 x Ø 300, 12.5 bar. Ports: 4x M 22x1.5 950 860 004 0 60 l, 960 x Ø 300, 12.5 bar. Ports: 4x M 22x1.5 950 940 902 0 40 l, 629 x Ø 310, 12.5 bar. Ports: 4x M 22x1.5, Aluminium 950 960 002 0 60 l, 906 x Ø 310, 11.0 bar. Ports: 4x M 22x1.5, Aluminium 951 002 133 0 4 l, 168 x Ø 206, 11.0 bar. Ports: 2x M 22x1.5 951 002 158 0 4 l, 278 x Ø 154, 15.5 bar. Ports: 3x M 22x1.5 951 005 010 0 1 l, 170 x Ø 101.6, 20 bar. Ports: 2x M 22x1.5  
  8. Like
    greega отреагировална Dmitry30 в Учебное пособие для студентов специальности «Автомобиле- и тракторостроение»   
    В данном пособии очень сжато описано устройство и принцип работы некоторых узлов автомобилей, в частности типы и кинематика подвесок, а также жесткость упругих элементов.
     
    Нам прежде всего интересен раздел 4.
    Раздел 4.4 по сути представляет собой переработанный материал программ самообучения ВАГ, но примечателен тем, что в отличии от ваговских брошюрок, содержит формулы для расчета  жесткости рукавного пневмоэлемента. 
     
    Кому формулы покажутся слишком примитивными, тот читает эту книжку http://pnevmopodveska-club.ru/topic/1271-kniga-pnevmaticheskie-i-gidropnevmaticheskie-p/
    там есть и практические значения показателя политропы отличные от 1,4 и точные расчеты размеров поршня и многое другое. 
    Husainov.pdf
  9. Downvote
    greega получил реакцию от Artemka2905 в Компрессор STEALTH SC-90 - что за зверь?   
    А вот у нас, нет их (((
  10. Like
    greega отреагировална Lejik в Разборные брекеты для слив   
    Надо сначала все проверить))
  11. Like
    greega отреагировална Is07 в Разборные брекеты для слив   
    Народ, все кто переделывает чертеж, который я выложил, исправляет какие-то недочеты, сопровождайте свои посты чертежами. А то просили, чтобы выложил, а сами тайны создаете!
  12. Like
    greega отреагировална pnevmotaz в Пневмоподушка+резьба коиловеров   
    А если так сделать:
    Взять стойку.Допустим вся стойка 45 мм, как и подушка
    Внизу приварить кольцо упорное.И добавлять кольца-проставки, легко снимаемые

  13. Like
    greega отреагировална Sanya в Легковой прицеп   
    http://uralbenzoteh.ru/produktsiya/pritsepy-telegi
  14. Like
    greega отреагировална gazil в Разьясните   
    Ребят ну посидите вы на форуме с месяц почитайте темы.Все ответы есть уже.И расписывать по 100 раз одно и тоже никто нехочет.
    Созданы отдельные темы и про трубки,клапона,фитинги,осушители и т.д
    Читайте.Удачи.
  15. Like
    greega получил реакцию от Лев в Помогите с подключением блока   
    Стали часто задавать вопрос, как подключить блок клапанов к кнопкам....
    Схемы приводились не раз, но суджя по всему, народ не понимает эти схемы.
    Решил нарисовать для того, что-бы было и ежу понятно...

    Думаю часть вопросов снимется. 
    Диоды ставим 3-5 ампер, из расчёта потребления катушек. Кнопки  3х позицеонные, не фиксируемые, постоянно выключенные. 3х контактные. Параллельно клапанам, можно поставить ещё диоды, на схеме не отображены, (для меньшего влияния тока самоиндукции катушек, на контакты кнопок и схемы автомобиля) Но работать будет и без них....
  16. Like
    greega получил реакцию от Admin в Геометрия подвески.Подвижность штока   
    Отличный способ!
    Если знать что делать.
    А так, к такой переделке нужно прийти. Нужно понять, нужно ли это, (пневма в смысле) А так да если знаешь, где что выточить, сколько обрезать и тд, это как в случае с мрамором, настоящий художник отсекает всё лишнее, и получает шедевр. А сколько тут у нас настоящих художников? Максимум что могут , это повторить. и то могут всё напортачить. А где образец, что копипастить то? Вот и получается, что-бы стать художником, нужно много тренироваться, а тренировки, нужно начинать с простого. И не всем дано художниками стать...
  17. Like
    greega получил реакцию от KumKorolu в Нужны характеристики рукавных подушек Airtech.   
    Пробои идут, на рессорах, без хэлперов, а ты просто представь, что в пакет рессор, накинули ещё по 2-3 листа, пробои будут? И накидывание груза, идёт не на переднюю подвеску, а на заднюю, тем самым, чуть разгружается перед. Так что ставь 2В220, и не парь мозХ.... Лишней грузоподъёмности в 3 тонны на перед, вполне хватит!, а если в подушки дунуть не 7 ,а 10 очей?  они это выдержат! На украинском сайте, один чел, поставил себе на мерина, на рычажную подвеску, 3В130, и давление у него было в районе 8-9 очей, хотели перенести подушки ближе к ступице, но порешали покататься на завышенном давлении, короче, так и оставил чел..., переделывать, как я понял не стал, комфорт его вполне устраивал, пережевал, только за давление. В общем, всё нормуль...
  18. Like
    greega отреагировална Wazokrit в Геометрия подвески.Подвижность штока   
    Тк у многих были вопросы, зачем нужна подвижность штока, сделал картинку для понимания.

     
    И так по картинке.
    Длинну аммортизатора взял 450мм, длинну нижнего рычага 500мм, аммортизатора 400мм(200мм вверх и вниз).Все данные взяты для понимания картины.

    Черным нарисован аммортизатор в стоковом положении(в окотором считаем что шток стоит вертикально).

    Зеленым нарисован аммортизатор в верхнем положении(сложен аммортизатор).В данном положении нижний рычаг поднимаеться вверх(занижение), и естественно относительно горизонтали укорачиваеться(464мм) тоесть уже смещение нижнего крепления аммортизатора на 36мм…Шток в таком положении выгнулся относительно стока на 4 градуса.

    Красным нарисован максимальный вылет аммортизатора…И также идет сдвиг на 36мм.
    И здесь шток сдвигаеться относительно стока на 3 градуса.

    Сдвиги получились одинковые потому что в 2е стороны выход штока 200мм.

    Если мы зажимаем штоком верхний брекет подушки, и упираем его в опору, то шток не имеет возможности менять угол.В таком случае вес авто давит на шток, и со временем(если угол не большой требуеться), гнет самое тонкое место.Обычно это место нажодиться на стыке рабочей части штока с нерабочей.

    Тоже самое происходит когда аммортизатор укорачиваем…угол увеличиваеться, тк укорачиваеться больше чем задуманно производителем.

    Данная картинка справедлива для всех типов подвески, разница лишь в длинне нижнего рычага.Чем длинней нижний рычаг тем меньше смещение, и чем короче рычаг тем больше смещение.
    Надеюсь внес немного ясности.
     
     
  19. Like
    greega получил реакцию от Maximus в Типы автомобильных подвесок   
    Тут и тут, ещё тут
  20. Like
    greega получил реакцию от gazil в Пневма на Land Cruiser 80   
    А сколько длинной пружина +6" , в свободном состоянии?
    Неужели больше 50см?
  21. Like
    greega получил реакцию от Yura2507 в Хитрости конструирования современных подвесок   
    Непростая простота, или некоторые хитрости конструирования современных подвесок
    Всякий водитель, ездивший на автомобиле Ford Fiesta первого поколения (Mk1), обращал внимание на практически полное отсутствие кренов этой машины (особенно при загрузке 1-2 человека) даже в очень напряженных поворотах. А ведь у Фиесты в подвесках вообще нет стабилизатора поперечной устойчивости — детали, ставшей в современных машинах настолько распространенной, что многие уже и не понимают, как можно бороться с кренами кузова без использования стабилизатора.
    Это заблуждение столь распространено, что многие и не задумываются — почему в независимых подвесках практически любого «формульного» спортивного болида (и не только F1, а и более «приземленных» серий типа Formula Ford или Formula Renault) нет никаких стабилизаторов. Для многих открытие этого факта стало настоящим шоком. Попробуем же разобраться — в чем тут дело.
    Прежде всего подумаем — а чем же плох стабилизатор поперечной устойчивости. Ведь крены он уменьшает вполне успешно — так почему же конструкторы спортивных подвесок его не используют?
    Рассмотрим простую ситуацию: автомобиль с независимой подвеской едет по дороге, и неожиданно наезжает правым колесом на кирпич. Предположим, что автомобиль едет достаточно быстро, и за время наезда кузов (ввиду большой массы и, соответственно, инерции) не успевает совершить сколько-нибудь существенного вертикального перемещения. Для простоты (чтобы не рассчитывать поправки на сжатие шины) будем считать шину несжимаемой — для современных низкопрофильных шин это практически так и есть. При этом допущении правое колесо благодаря подвеске совершит ход вверх, равный толщине кирпича — причем никакой стабилизатор этому помешать не сможет.
    Для полностью независимой подвески без стабилизатора удар, передаваемый на кузов машины, в этом случае будет определяться лишь жесткостью пружины правой подвески и незначительным усилием хода амортизатора вверх, а левая подвеска останется неподвижной.
    Совсем иное дело, если у нас имеется стабилизатор поперечной устойчивости. Ход правой подвески (на ту самую толщину кирпича) закручивает стабилизатор, и он передает дополнительное усилие на левый рычаг, пружину и амортизатор, вызывая их сжатие. Даже если жесткость стабилизатора всего лишь равна жесткости левой пружины (а во многих подвесках она намного выше — иначе стабилизатор не будет эффективен против кренов) — это означает, что левая подвеска будет также пробита, правда, лишь на половину толщины кирпича. Однако и такой ход левой подвески будет означать усиление удара, передаваемого на кузов, в полтора раза по сравнению с ситуацией без стабилизатора.
    Казалось бы — ситуацию можно парировать, пропорционально ослабив пружины подвески. Но это лишь кажется — дело в том, что при одновременном нагружении правой и левой подвесок стабилизатор не работает, и подвески оказываются слишком ослабленными. То есть — машина плохо переносит поперечные волны асфальта (а тем более «лежачих полицейских») и оказывается склонна к глубоким «кивкам» при торможении. А если ослабить стабилизатор — он станет неэффективен против кренов кузова.
    Причем эта ситуация для независимой подвески со стабилизатором принципиально неустранима — она либо менее комфортна, чем чистая независимая подвеска без стабилизатора, либо при той же комфортности хуже парирует продольную раскачку и «клевки» кузова. И чем жестче стабилизатор — тем эти неустранимые проблемы значительнее.
    В качестве дополнительных минусов выступают:
    Ухудшение проходимости (частичное диагональное вывешивание) из-за разгрузки идущих вниз колес на неровностях за счет закрутки стабилизатора идущим вверх колесом противоположного борта. Именно поэтому все настоящие джипы столь склонны к кренам в поворотах, а их стабилизаторы поперечной устойчивости, если даже они имеются, очень слабы. Неоптимальность настроек амортизаторов для ситуаций симметричной и несимметричной нагрузки подвесок — опять же из-за переменного влияния жесткости стабилизатора при неизменных неподрессоренных массах. Что же делать?
    Без стабилизатора и без кренов
    А ведь крены в повороте можно устранить и без использования стабилизатора поперечной устойчивости. Это, в конце концов, чисто геометрическая задача — надо лишь сделать подвеску такой геометрии, чтобы при известной свободе вертикального перемещения колес треугольник, образованный точками контакта колес с дорогой и центром масс машины, имел бы строго постоянные размеры либо, если это невозможно, как можно меньше изменял бы эти размеры и сохранял неизменную высоту своей вершины (с тем, чтобы вектор центробежной силы, исходя из центра масс, проходил через эту вершину).
    Это задача трудная — но вполне разрешимая не только в случае сложной многорычажной подвески с неравноплечими рычагами (как у F1), но и даже для компактной подвески McPherson. Что как раз блестяще доказали инженеры Ford, проектируя в 1975 году автомобиль Фиеста.

     

    Рис.1 Схема работы независимой подвески McPherson с наклонными рычагами.
    Посмотрим на рис.1 — на нем изображена схема геометрии подвески Фиесты Mk1. Точки А — это оси качания нижних V-образных рычагов подвески, точки Е — шаровые шарниры этих рычагов, точки С — верхние опоры стоек МакФерсон. Поскольку размер А-С задан конструктивно кузовом машины, а нижний рычаг А-Е жесткий — треугольник А-С-Е может изменять свой размер только по стороне С-Е за счет изменения высоты амортизатора (стойки МакФерсон).
    Это — как у всех машин с подвеской МакФерсон. А вот что у Фиесты не как у всех: если провести прямую из точки контакта колеса с дорогой В через ось качания нижнего рычага подвески А — она пройдет через точку фронтальной проекции центра масс машины ЦТ (точка D).
    Это более-менее очевидно на рис.1. Менее очевиден факт, что размер А-В почти постоянен при ходах подвески. Однако это в целом кажется неважным, поскольку очевидно, что при ходах колеса вверх-вниз прямая В-А-D будет изменять свой наклон относительно горизонтали, что, как кажется, приведет к искажению размера треугольника В-В-D и его смещению из центра масс машины ЦТ.
    Чтобы понять гениальность конструкторского фокуса, рассмотрим гипотетический крен машины, поворачивающей налево. Она могла бы наклониться наружу поворота — при этом правое колесо сместилось бы вверх (размер E-C уменьшился), а левое колесо сместилось бы вниз (размер Е-С увеличился) на одинаковую величину. Что в этом случае произошло бы с точкой пересечения двух прямых B-A — то есть точкой D?
    Она, несомненно, сместилась бы в сторону от центра масс машины ЦТ. Но куда? В сторону, противоположную действующей центробежной силе — но при этом осталась бы в первом приближении на неизменной высоте. То есть вектор центробежной силы по-прежнему будет проходить через точку D — несмотря на гипотетическое срабатывание подвесок! Другими словами — с точки зрения вектора центробежной силы, исходящей из центра масс машины, ничего не изменилось, треугольник не изменил свою высоту, а это значит, что крена кузова просто не может возникнуть — нет плеча, на котором бы центробежная сила совершила работу, ведь вектор проходит точно через вершину треугольника. То есть — внешнее колесо в повороте нагружается, внутреннее — разгружается, на обоих колесах появляются боковые усилия, но просадки подвесок не происходит. Крена — нет.
    Трудно понять? Тогда представьте себе, что нижние рычаги подвесок начинались бы в точке D и заканчивались бы шаровым шарниром в точке B. Колеса на ухабах будут перемещаться? Будут. А крены будут? Нет — потому что треугольник B-B-D получается жестким, и нет плеча, на котором бы центробежная сила вызвала кренящий момент.
    Блестящая идея! И она блестяще работает на практике. Садитесь за руль Фиесты Mk1 и убедитесь в этом сами.
    Идеал недостижим
    Но почему же такая схема не используется повсеместно? Ведь она предлагает сочетание минимальных кренов с наилучшими реакциями подвесок на неровности дороги и оптимальную проходимость благодаря полной развязке колес друг от друга?
    К сожалению, эта схема имеет и определенные врожденные недостатки.
    Недостаток номер 1 — для того, чтобы прямая В-А-D попала в центр масс ЦТ, у машин с типичными утилитарными компоновками (то есть с высоким центром тяжести, вызванным рядными вертикальными моторами и высокими кузовами) надо либо ставить колеса ненормально большого диаметра (опуская точку В), либо поднимать оси качания нижнего рычага А (что приводит к наклонным нижним рычагам из-за компоновочных трудностей с подъемом точки Е, особенно на переднеприводных машинах). Конструкторы Фиесты поставили наклонные рычаги — которые, естественно, вызывают изменение колеи машины при симметричных ходах подвески. Это изменение колеи составляет несколько сантиметров и очень хорошо заметно — когда Фиеста на полном ходу ловит поперечную волну асфальта, даже шины с высоким профилем протестующе взвизгивают. Впрочем, если используются сравнительно «пухлые» (высокопрофильные) шины, это почти не влияет на их долговечность — но вот для низкопрофильных спортивных шин ситуация гораздо хуже.
    Кроме того, наклонные нижние рычаги вызывают некоторую реакцию на руле при проезде неровностей (боковое усилие на плече кастера) — однако для легкой машины типа Фиесты с нейтральными колесами (развал и схождение нулевые) и малым кастером этот эффект хотя и заметен, но не доставляет неудобств.
    Справедливости ради надо сказать, что недостаток N1 не является абсолютно неустранимым — машины с очень низкими и тяжелыми оппозитными силовыми агрегатами (например, Subaru Impreza или Porshe-911) вполне могут иметь горизонтальные нижние рычаги, и при этом попадать точкой D в центр масс — просто ввиду того, что этот центр у них расположен очень низко. Что у них и сделано.
    Одновременно конструкторы реализуют и второй путь — увеличение диаметра колес. Уже не редкость машины B-класса (то есть класса Фиесты) с 15-дюймовыми колесами — а ведь когда-то даже на Волге ГАЗ-24 стояли 13-дюймовые колеса…
    Недостаток номер 2 — изменение настройки подвески при изменении загрузки машины. Это вызывается как изменением высоты центра масс машины, так и симметричной просадкой правой и левой подвесок — при которой точка D смещается вниз. Соответственно, как только точки D и ЦТ расходятся по высоте — крены начинают стремительно нарастать, и на Фиесте это очень хорошо заметно.
    Этот недостаток принципиален и не может быть устранен ничем, кроме активной адаптивной подвески. Именно из-за этого недостатка Subaru все-таки ставит стабилизаторы поперечной устойчивости.
    Недостаток номер 3 — изменение настройки подвески при изменении диаметра колес. Применительно к Фиесте Мк1 — колеса 13’ с резиной 80% высоты дают нейтральную настройку по крену для загрузки 2 человека спереди, а штатные 12’ колеса дают слегка положительную настройку даже для одного человека.
    Также из внимательного рассмотрения геометрии на рис.1 можно увидеть несколько интересных моментов фиестовской передней подвески. Например, ее колеса имеют переменный развал — при средней загрузке он нейтральный, однако при просадке подвески развал становится положительным (расстояние между колесами сверху меньше, чем снизу), а при выходе подвески развал становится отрицательным. Это — чисто спортивный прием, который призван до некоторой степени компенсировать деформацию покрышки из-за боковой нагрузки в повороте. Разумеется, он начинает действовать тогда, когда появляются крены кузова — то есть, на практике, при значительной загрузке автомобиля.
    Кроме того, при повороте руля колеса Фиесты наклоняются внутрь поворота на несколько градусов — это еще одно чисто гоночное решение для компенсации деформации шины от боковой центробежной силы. Это механизм работает всегда — вне зависимости от нагрузки.
    К тому же, наклонные нижние рычаги вызывают при просадке подвески движение колеса наружу. Это вызывает на ухабах формальное расширение динамического коридора — однако одновременно дает очень интересные ощущения поведения машины, она как бы сама стремится уйти от неровности, оставить ухаб за бортом. Это одна из тех черт поведения, которые вместе создают поразительный образ услужливой и умной машины, которая «сама едет правильно». Нечто подобное демонстрируют только машины Toyota — но они ведут себя спокойнее и скучнее (хотя, спору нет — еще предсказуемее и безопаснее), в то время как Фиеста Mk1 гораздо более заводная, веселенькая машинка, которая и сама может слегка подсыпать перчика (но именно слегка, не напрягая водителя и не переступая грань тупого постоянного непослушания), и водителя провоцируя ехать резче, активнее. Если опять пытаться сравнивать с японцами — это некоторый гибрид из тойотовской услужливости, хондовской спортивной остроты и некоторой специфической американской «неправильности» реакций машины — причем именно эта неправильность является завершающим штрихом в образе, позволяя Фиесте не казаться копией с японки, а иметь собственный, уникальный характер.
    Причем это связано именно с настройками шасси — потому что даже с 53-сильным мотором характер у машины точно такой же. Отдельный вопрос, что с таким мотором сильно не похулиганишь — но для некоторых водителей это благо. Я лично, после того как поставил на Фиесту 96-сильный мотор, несколько месяцев вообще не мог спокойно ездить — не поверите, но даже Subaru Impreza WRX заводит не так сильно. Импреза, правда, и в управлении построже — таких ляпов, какие прощает Фиеста, она не простит. Видимо, это как раз и останавливало.
    Но вернемся к подвеске. Отмеченное мной ранее изменение колеи при ходах подвески требует специфической конструкции рулевого механизма для компенсации сдвига колеса. Фордовские конструкторы выбрали наиболее логичное решение — они сделали рулевые тяги такой же длинны, как нижние рычаги подвески, и придали им такой же наклон. В результате получается типичный параллелограмм — и проблема неизменного угла поворота колеса вне зависимости от изменения колеи оказывается решена столь просто и элегантно, что большинство конструкторов, пытавшихся копировать «Фиесту», даже не осознали ее наличия.
    В общем, надо осознать следующее: в чистом виде компенсированная по крену подвеска очень чувствительна к изменениям развесовки машины, и требует точного согласования геометрических размеров своих составляющих — что не всегда возможно по компоновочным соображениям. Поэтому она идеальна для специальных спортивных машин, приемлима для легких машин со спортивным характером в ограниченном диапазоне нагрузок, и совершенно не подходит для больших утилитарных машин типа семейных универсалов.
    Впрочем, возможность иметь на дешевом серийном компактном хэтчбеке одновременно формульный мотор (CVH 1600 — омологированный мотор Формулы Форд 80-х годов) и формульную свободную подвеску дорогого стоит — спасибо команде Ли Якокки, давшей нам в далеком 1975-м году такую возможность.
    Общая Теория Всего
    Напоследок проведу небольшой ликбез по теории «подвескостроения» — что там зачем сделано и что означают различные термины.
    Самое простое и, казалось бы, очевидное решение — прикрутить к машине колеса, как на телеге. То есть — вообще не делать никаких углов, поставить колесо параллельно осям машины. При этом колесо в ходе сжатия-отбоя остается перпендикулярным к дороге, в постоянном и надежном контакте с ней. Кстати — именно так стоят задние колеса на Фиесте, благодаря ее полузависимой задней подвеске с жесткой балкой.
    Но вот на передних колесах совместить центральную плоскость вращения колеса и ось его поворота конструктивно довольно сложно (особенно если говорить о классической двухрычажной подвеске типа заднеприводных «жигулей»), поскольку обе шаровые опоры (а тем более шкворни, как на Волге или УАЗе) вкупе с тормозным механизмом внутрь колеса, как правило, не помещаются. А раз так, то плоскость качения и ось поворота расходятся на расстояние А, называемое плечом обката (при повороте колесо обкатывается вокруг оси ab) — см. рис.2. В движении сила сопротивления качению неведущего колеса создает на этом плече А ощутимый момент, скачкообразно меняющийся при проезде неровностей. Мало кому понравится езда с постоянно рвущимся из рук рулем! Кроме того, придется изрядно попотеть, преодолевая этот самый момент в повороте.
     
    Стало быть, положительное (в данном случае) плечо обката желательно уменьшить, а то и вовсе свести к нулю. Для этого можно наклонить ось поворота ab (рис.3).
     
    На практике делают так: несколько наклонив ось поворота (бета), нужную величину добирают наклоном плоскости вращения колеса (альфа). Угол альфа и есть развал. Под этим углом колесо опирается о дорогу. Покрышка в зоне контакта, естественно, деформируется — см. рис.4. В результате автомобиль движется словно на двух конусах, стремящихся раскатиться в разные стороны. Чтобы компенсировать эту неприятность, плоскости вращения колес надо свести. Этот процесс называется регулировкой схождения. Как вы уже догадались, оба параметра жестко связаны. То есть,если угол развала нулевой, не должно быть и схождения, отрицательный — требуется расхождение, иначе шины будут «гореть». Если на автомобиле развал колес выставлен по-разному, его будет тянуть в сторону колеса с большим наклоном.
     
    Другие два угла обеспечивают стабилизацию управляемых колес — проще говоря, заставляют автомобиль с отпущенным рулем ехать прямо. Первый, уже знакомый нам угол поперечного наклона оси поворота (бета) отвечает за весовую стабилизацию. Легко заметить, что при этой схеме в момент отклонения колеса от «нейтрали» передок начинает подниматься (рис.5). А так как весит он немало, то при отпускании руля под действием силы тяжести система стремится занять исходное положение, соответствующее движению по прямой. Правда, для этого приходится сохранять то самое, хоть и небольшое, но нежелательное по соображениям усилия на руле, положительное плечо обката.
     
    Продольный угол наклона оси поворота — кастер (рис.6) — дает динамическую стабилизацию. Принцип ее ясен из поведения рояльного колесика — в движении оно стремится оказаться позади ножки, то есть занять наиболее устойчивое положение. Чтобы получить тот же эффект в автомобиле, точка пересечения оси поворота с поверхностью дороги (с) должна быть впереди центра пятна контакта колеса с дорогой (d). Для этого ось поворота и наклоняют вдоль хода машины.
     
    Теперь при повороте боковые реакции дороги, приложенные позади (спасибо кастеру!) стараются вернуть колесо на место — см. рис.7.
    Более того, если на машину действует боковая сила, не связанная с поворотом (например, вы едете по косогору или при боковом ветре), то кастер обеспечивает при случайно отпущенном руле плавный поворот машины «под склон» или «под ветер» и не дает ей опрокинуться.
    В переднеприводном автомобиле с подвеской МакФерсон ситуация совершенно иная. Эта конструкция позволяет получить нулевое и даже отрицательное плечо обката — ведь внутрь колеса здесь надо «запихнуть» лишь опору единственного рычага. Угол развала (и, соответственно, схождения) легко свести к минимуму. Так и есть: у Фиесты (как и у знакомых всем ВАЗов «восьмого» семейства) развал — 0°?30?, схождение — 0?0.5 мм. Такая регулировка развала-схождения называется нейтральной. Так как передние колеса теперь тянут автомобиль, динамическая стабилизация при разгоне не требуется — колесо уже не катится позади ножки, а тянет ее за собой. Небольшой (1°30?) кастер сохранен для устойчивости при торможении. Значительный вклад в «правильное» поведение автомобиля вносит небольшое отрицательное плечо обката — при возрастании сопротивления качению колеса оно автоматически корректирует траекторию.
    Буратино-тюнинг
    Разумеется, настройки подвески делаются не абы как — конструкторы тщательно просчитывают геометрию, затем испытатели откатывают вариант на треке, снова пересчитывают, корректируют геометрию, и снова испытывают — и так множество раз. А потом машину покупает буратино-тюнер — и начинает «улучшать» конструкцию.
    Первой (и наиболее распространенной) ошибкой является установка более широкой резины или резины на дисках с большим вылетом — это приводит к увеличению плеча обката колеса до положительных величин, и руль начинает рвать из рук, особенно при торможении.
    Ошибка номер два — поднятие зада машины проставками. При достаточно высоких проставках кастер, и так небольшой, становится нулевым или даже положительным — последнее очень опасно, так как при резком торможении руль может просто вырвать из рук, а если оборвется рулевая тяга — катастрофа даже на прямом участке дороги будет неминуемой.
    В отличие от этих двух ошибок, простое увеличение диаметра колеса (при сохранении неизменным вылета диска) на Фиесте не является проблемой — поскольку колесо имеет нейтральные (нулевые) углы развала и схождения, увеличение диаметра сказывается лишь на линейном значении кастера в сторону его небольшого увеличения. Ну и, как я объяснил вначале, влияет на настройку подвески по крену.
    И все-таки она кренится
    И все-таки, как можно видеть на фотографии из американского журнала Car & Driver, Фиесту Мк1 можно накренить — и преизрядно:

     
    Как же это получается? А все достаточно просто: во-первых, Фиеста загружена до полной массы — причем, кроме двух человек впереди, остальной груз в виде мешков с песком положили сзади в багажник. Во-вторых, Фиеста укомплектована штатными дисками 12’ — но с более низкой, чем обычно, резиной (результат — точка D опустилась вниз как из-за резины, так и из-за просадки пружин подвески).
    Особо надо отметить мешки с песком в багажнике. Дело в том, что задняя подвеска Фиесты — полузависимая с жесткой балкой (5-link dead beam axle) и без стабилизатора (стабилизатор ставится на нее только в версии XR2). Из-за оригинальной развесовки Фиесты (примерно 75% веса при одном водителе приходится на переднюю ось, и лишь 25% на заднюю) на слабозагруженной машине эта некомпенсированная по крену задняя подвеска не играет большой роли — однако после того, как задняя ось получила дополнительные 300 кг песка, ситуация резко поменялась, вес распределился в пропорции 60:40, и зад начал серьезно кренить лишенную стабилизаторов машину с «американскими» мягкими подвесками.
    Не далее как на днях я проверил эту гипотезу, когда возил картошку. Правда, 300 кг я все-таки не насыпал — но 170 кг в багажник положил играючи. Усиленные задние пружины просели не очень сильно — но передок, конечно, заметно задрался, и крены в поворотах появились.
    И, наконец, на фотографии ранняя американская версия Фиесты — скорее даже мелкосерийный прототип, с тяжелым и высоким мотором Kent-1600, а также геометрией и жесткостью подвески, не вполне соответствующей финальной спецификации Mk1 (известной как Valencia-1976). У нее выше центр тяжести и меньше стабилизирующие свойства подвески, меньше жесткость подвески — результат вы наблюдаете на фотографии.
    Но даже эта версия машины заслужила самые лестные отзывы журнала за управляемость. Не забывайте — на фотографии тяжело груженая машина идет в управляемом заносе всех четырех колес, большинство современных утилитарных машин аналогичного класса в этой ситуации безбожно вывешивают как минимум одно заднее колесо, а Фиеста, как видите, цепко держится всеми четырьмя, несмотря на запредельные крены. И, между прочим, «лосиная переставка» не переворачивает эту машину, как какой-то там несчастный Mercedes A-klasse.
    Кстати, приведенная выше фотография — практически единственная, на которой Фиеста Mk1 изображена со значительным креном. На самом же деле типичная картина Фиесты Mk1 в повороте — вот такая:
    Как видите — крены нулевые, Фиеста нагло едет «блинчиком» несмотря на значительные боковые ускорения. Машина с одним водителем на колесах 13’ может демонстрировать даже отрицательные крены — то есть поднимать внешний борт в повороте. Это уже, конечно, перебор — но факт есть факт. Умели в середине 70-х проектировать машины на Форде…
     
    А вот «Фиеста» Mk1 на ралли — в вираже даже удалось оторвать одно из передних колес от грунта, но крены по-прежнему весьма умеренные.
    Кстати говоря, в этом же Car & Driver эту же самую Фиесту сравнивали с Volkswagen Sirocco — при аналогичной динамике (четверть мили с места за 18 секунд) Фиеста была чуть ли не вдвое дешевле по цене и проходила 35 миль на одном галлоне топлива против 28 миль у Сирокко. Впечатляет? Вот и журналистов тоже впечатлило.
    Где тот Сирокко? А Фиеста — вот она, выпущено более 10 миллионов машин и продолжает выпускаться уже пятое поколение. Уже пятое — но снова с той же полузависимой подвеской сзади, и с аналогичной Mk1 компенсированной по крену подвеской спереди. Спустя 30 лет эти технические решения снова вернулись, доказав свою правильность. И эти решения послужили залогом убедительной победы питерца Аркадия Павловского в гонках Turing Lite — в которых единственная Фиеста Mk5, впервые стартовавшая в гонках, настолько легко раз за разом обходила почти 30 VW Polo, ситроенов и прочих одноклассников, что технической комиссии пришлось срочно выдумывать нарушения в регламенте (они их и выдумали — посчитав переделкой машины переставленный в салон аккумулятор). Вам смешно — а что им было делать, если гонки при таком техническом преимуществе теряли смысл еще на старте сезона?

     
    Видите — и тут Фиеста нагло едет «блинчиком», а идущие рядом Polo все-таки кренит, несмотря на «дубовые» спортивные подвески и стабилизаторы немерянной толщины. Геометрию с 1975 года никто так и не отменил…
     
     ford.h11.ru
  22. Like
    greega отреагировална brighton828 в Ак-50   
    http://www.youtube.com/watch?v=8Se1fD56iVE
  23. Like
    greega получил реакцию от MAW в Хитрости конструирования современных подвесок   
    Непростая простота, или некоторые хитрости конструирования современных подвесок
    Всякий водитель, ездивший на автомобиле Ford Fiesta первого поколения (Mk1), обращал внимание на практически полное отсутствие кренов этой машины (особенно при загрузке 1-2 человека) даже в очень напряженных поворотах. А ведь у Фиесты в подвесках вообще нет стабилизатора поперечной устойчивости — детали, ставшей в современных машинах настолько распространенной, что многие уже и не понимают, как можно бороться с кренами кузова без использования стабилизатора.
    Это заблуждение столь распространено, что многие и не задумываются — почему в независимых подвесках практически любого «формульного» спортивного болида (и не только F1, а и более «приземленных» серий типа Formula Ford или Formula Renault) нет никаких стабилизаторов. Для многих открытие этого факта стало настоящим шоком. Попробуем же разобраться — в чем тут дело.
    Прежде всего подумаем — а чем же плох стабилизатор поперечной устойчивости. Ведь крены он уменьшает вполне успешно — так почему же конструкторы спортивных подвесок его не используют?
    Рассмотрим простую ситуацию: автомобиль с независимой подвеской едет по дороге, и неожиданно наезжает правым колесом на кирпич. Предположим, что автомобиль едет достаточно быстро, и за время наезда кузов (ввиду большой массы и, соответственно, инерции) не успевает совершить сколько-нибудь существенного вертикального перемещения. Для простоты (чтобы не рассчитывать поправки на сжатие шины) будем считать шину несжимаемой — для современных низкопрофильных шин это практически так и есть. При этом допущении правое колесо благодаря подвеске совершит ход вверх, равный толщине кирпича — причем никакой стабилизатор этому помешать не сможет.
    Для полностью независимой подвески без стабилизатора удар, передаваемый на кузов машины, в этом случае будет определяться лишь жесткостью пружины правой подвески и незначительным усилием хода амортизатора вверх, а левая подвеска останется неподвижной.
    Совсем иное дело, если у нас имеется стабилизатор поперечной устойчивости. Ход правой подвески (на ту самую толщину кирпича) закручивает стабилизатор, и он передает дополнительное усилие на левый рычаг, пружину и амортизатор, вызывая их сжатие. Даже если жесткость стабилизатора всего лишь равна жесткости левой пружины (а во многих подвесках она намного выше — иначе стабилизатор не будет эффективен против кренов) — это означает, что левая подвеска будет также пробита, правда, лишь на половину толщины кирпича. Однако и такой ход левой подвески будет означать усиление удара, передаваемого на кузов, в полтора раза по сравнению с ситуацией без стабилизатора.
    Казалось бы — ситуацию можно парировать, пропорционально ослабив пружины подвески. Но это лишь кажется — дело в том, что при одновременном нагружении правой и левой подвесок стабилизатор не работает, и подвески оказываются слишком ослабленными. То есть — машина плохо переносит поперечные волны асфальта (а тем более «лежачих полицейских») и оказывается склонна к глубоким «кивкам» при торможении. А если ослабить стабилизатор — он станет неэффективен против кренов кузова.
    Причем эта ситуация для независимой подвески со стабилизатором принципиально неустранима — она либо менее комфортна, чем чистая независимая подвеска без стабилизатора, либо при той же комфортности хуже парирует продольную раскачку и «клевки» кузова. И чем жестче стабилизатор — тем эти неустранимые проблемы значительнее.
    В качестве дополнительных минусов выступают:
    Ухудшение проходимости (частичное диагональное вывешивание) из-за разгрузки идущих вниз колес на неровностях за счет закрутки стабилизатора идущим вверх колесом противоположного борта. Именно поэтому все настоящие джипы столь склонны к кренам в поворотах, а их стабилизаторы поперечной устойчивости, если даже они имеются, очень слабы. Неоптимальность настроек амортизаторов для ситуаций симметричной и несимметричной нагрузки подвесок — опять же из-за переменного влияния жесткости стабилизатора при неизменных неподрессоренных массах. Что же делать?
    Без стабилизатора и без кренов
    А ведь крены в повороте можно устранить и без использования стабилизатора поперечной устойчивости. Это, в конце концов, чисто геометрическая задача — надо лишь сделать подвеску такой геометрии, чтобы при известной свободе вертикального перемещения колес треугольник, образованный точками контакта колес с дорогой и центром масс машины, имел бы строго постоянные размеры либо, если это невозможно, как можно меньше изменял бы эти размеры и сохранял неизменную высоту своей вершины (с тем, чтобы вектор центробежной силы, исходя из центра масс, проходил через эту вершину).
    Это задача трудная — но вполне разрешимая не только в случае сложной многорычажной подвески с неравноплечими рычагами (как у F1), но и даже для компактной подвески McPherson. Что как раз блестяще доказали инженеры Ford, проектируя в 1975 году автомобиль Фиеста.

     

    Рис.1 Схема работы независимой подвески McPherson с наклонными рычагами.
    Посмотрим на рис.1 — на нем изображена схема геометрии подвески Фиесты Mk1. Точки А — это оси качания нижних V-образных рычагов подвески, точки Е — шаровые шарниры этих рычагов, точки С — верхние опоры стоек МакФерсон. Поскольку размер А-С задан конструктивно кузовом машины, а нижний рычаг А-Е жесткий — треугольник А-С-Е может изменять свой размер только по стороне С-Е за счет изменения высоты амортизатора (стойки МакФерсон).
    Это — как у всех машин с подвеской МакФерсон. А вот что у Фиесты не как у всех: если провести прямую из точки контакта колеса с дорогой В через ось качания нижнего рычага подвески А — она пройдет через точку фронтальной проекции центра масс машины ЦТ (точка D).
    Это более-менее очевидно на рис.1. Менее очевиден факт, что размер А-В почти постоянен при ходах подвески. Однако это в целом кажется неважным, поскольку очевидно, что при ходах колеса вверх-вниз прямая В-А-D будет изменять свой наклон относительно горизонтали, что, как кажется, приведет к искажению размера треугольника В-В-D и его смещению из центра масс машины ЦТ.
    Чтобы понять гениальность конструкторского фокуса, рассмотрим гипотетический крен машины, поворачивающей налево. Она могла бы наклониться наружу поворота — при этом правое колесо сместилось бы вверх (размер E-C уменьшился), а левое колесо сместилось бы вниз (размер Е-С увеличился) на одинаковую величину. Что в этом случае произошло бы с точкой пересечения двух прямых B-A — то есть точкой D?
    Она, несомненно, сместилась бы в сторону от центра масс машины ЦТ. Но куда? В сторону, противоположную действующей центробежной силе — но при этом осталась бы в первом приближении на неизменной высоте. То есть вектор центробежной силы по-прежнему будет проходить через точку D — несмотря на гипотетическое срабатывание подвесок! Другими словами — с точки зрения вектора центробежной силы, исходящей из центра масс машины, ничего не изменилось, треугольник не изменил свою высоту, а это значит, что крена кузова просто не может возникнуть — нет плеча, на котором бы центробежная сила совершила работу, ведь вектор проходит точно через вершину треугольника. То есть — внешнее колесо в повороте нагружается, внутреннее — разгружается, на обоих колесах появляются боковые усилия, но просадки подвесок не происходит. Крена — нет.
    Трудно понять? Тогда представьте себе, что нижние рычаги подвесок начинались бы в точке D и заканчивались бы шаровым шарниром в точке B. Колеса на ухабах будут перемещаться? Будут. А крены будут? Нет — потому что треугольник B-B-D получается жестким, и нет плеча, на котором бы центробежная сила вызвала кренящий момент.
    Блестящая идея! И она блестяще работает на практике. Садитесь за руль Фиесты Mk1 и убедитесь в этом сами.
    Идеал недостижим
    Но почему же такая схема не используется повсеместно? Ведь она предлагает сочетание минимальных кренов с наилучшими реакциями подвесок на неровности дороги и оптимальную проходимость благодаря полной развязке колес друг от друга?
    К сожалению, эта схема имеет и определенные врожденные недостатки.
    Недостаток номер 1 — для того, чтобы прямая В-А-D попала в центр масс ЦТ, у машин с типичными утилитарными компоновками (то есть с высоким центром тяжести, вызванным рядными вертикальными моторами и высокими кузовами) надо либо ставить колеса ненормально большого диаметра (опуская точку В), либо поднимать оси качания нижнего рычага А (что приводит к наклонным нижним рычагам из-за компоновочных трудностей с подъемом точки Е, особенно на переднеприводных машинах). Конструкторы Фиесты поставили наклонные рычаги — которые, естественно, вызывают изменение колеи машины при симметричных ходах подвески. Это изменение колеи составляет несколько сантиметров и очень хорошо заметно — когда Фиеста на полном ходу ловит поперечную волну асфальта, даже шины с высоким профилем протестующе взвизгивают. Впрочем, если используются сравнительно «пухлые» (высокопрофильные) шины, это почти не влияет на их долговечность — но вот для низкопрофильных спортивных шин ситуация гораздо хуже.
    Кроме того, наклонные нижние рычаги вызывают некоторую реакцию на руле при проезде неровностей (боковое усилие на плече кастера) — однако для легкой машины типа Фиесты с нейтральными колесами (развал и схождение нулевые) и малым кастером этот эффект хотя и заметен, но не доставляет неудобств.
    Справедливости ради надо сказать, что недостаток N1 не является абсолютно неустранимым — машины с очень низкими и тяжелыми оппозитными силовыми агрегатами (например, Subaru Impreza или Porshe-911) вполне могут иметь горизонтальные нижние рычаги, и при этом попадать точкой D в центр масс — просто ввиду того, что этот центр у них расположен очень низко. Что у них и сделано.
    Одновременно конструкторы реализуют и второй путь — увеличение диаметра колес. Уже не редкость машины B-класса (то есть класса Фиесты) с 15-дюймовыми колесами — а ведь когда-то даже на Волге ГАЗ-24 стояли 13-дюймовые колеса…
    Недостаток номер 2 — изменение настройки подвески при изменении загрузки машины. Это вызывается как изменением высоты центра масс машины, так и симметричной просадкой правой и левой подвесок — при которой точка D смещается вниз. Соответственно, как только точки D и ЦТ расходятся по высоте — крены начинают стремительно нарастать, и на Фиесте это очень хорошо заметно.
    Этот недостаток принципиален и не может быть устранен ничем, кроме активной адаптивной подвески. Именно из-за этого недостатка Subaru все-таки ставит стабилизаторы поперечной устойчивости.
    Недостаток номер 3 — изменение настройки подвески при изменении диаметра колес. Применительно к Фиесте Мк1 — колеса 13’ с резиной 80% высоты дают нейтральную настройку по крену для загрузки 2 человека спереди, а штатные 12’ колеса дают слегка положительную настройку даже для одного человека.
    Также из внимательного рассмотрения геометрии на рис.1 можно увидеть несколько интересных моментов фиестовской передней подвески. Например, ее колеса имеют переменный развал — при средней загрузке он нейтральный, однако при просадке подвески развал становится положительным (расстояние между колесами сверху меньше, чем снизу), а при выходе подвески развал становится отрицательным. Это — чисто спортивный прием, который призван до некоторой степени компенсировать деформацию покрышки из-за боковой нагрузки в повороте. Разумеется, он начинает действовать тогда, когда появляются крены кузова — то есть, на практике, при значительной загрузке автомобиля.
    Кроме того, при повороте руля колеса Фиесты наклоняются внутрь поворота на несколько градусов — это еще одно чисто гоночное решение для компенсации деформации шины от боковой центробежной силы. Это механизм работает всегда — вне зависимости от нагрузки.
    К тому же, наклонные нижние рычаги вызывают при просадке подвески движение колеса наружу. Это вызывает на ухабах формальное расширение динамического коридора — однако одновременно дает очень интересные ощущения поведения машины, она как бы сама стремится уйти от неровности, оставить ухаб за бортом. Это одна из тех черт поведения, которые вместе создают поразительный образ услужливой и умной машины, которая «сама едет правильно». Нечто подобное демонстрируют только машины Toyota — но они ведут себя спокойнее и скучнее (хотя, спору нет — еще предсказуемее и безопаснее), в то время как Фиеста Mk1 гораздо более заводная, веселенькая машинка, которая и сама может слегка подсыпать перчика (но именно слегка, не напрягая водителя и не переступая грань тупого постоянного непослушания), и водителя провоцируя ехать резче, активнее. Если опять пытаться сравнивать с японцами — это некоторый гибрид из тойотовской услужливости, хондовской спортивной остроты и некоторой специфической американской «неправильности» реакций машины — причем именно эта неправильность является завершающим штрихом в образе, позволяя Фиесте не казаться копией с японки, а иметь собственный, уникальный характер.
    Причем это связано именно с настройками шасси — потому что даже с 53-сильным мотором характер у машины точно такой же. Отдельный вопрос, что с таким мотором сильно не похулиганишь — но для некоторых водителей это благо. Я лично, после того как поставил на Фиесту 96-сильный мотор, несколько месяцев вообще не мог спокойно ездить — не поверите, но даже Subaru Impreza WRX заводит не так сильно. Импреза, правда, и в управлении построже — таких ляпов, какие прощает Фиеста, она не простит. Видимо, это как раз и останавливало.
    Но вернемся к подвеске. Отмеченное мной ранее изменение колеи при ходах подвески требует специфической конструкции рулевого механизма для компенсации сдвига колеса. Фордовские конструкторы выбрали наиболее логичное решение — они сделали рулевые тяги такой же длинны, как нижние рычаги подвески, и придали им такой же наклон. В результате получается типичный параллелограмм — и проблема неизменного угла поворота колеса вне зависимости от изменения колеи оказывается решена столь просто и элегантно, что большинство конструкторов, пытавшихся копировать «Фиесту», даже не осознали ее наличия.
    В общем, надо осознать следующее: в чистом виде компенсированная по крену подвеска очень чувствительна к изменениям развесовки машины, и требует точного согласования геометрических размеров своих составляющих — что не всегда возможно по компоновочным соображениям. Поэтому она идеальна для специальных спортивных машин, приемлима для легких машин со спортивным характером в ограниченном диапазоне нагрузок, и совершенно не подходит для больших утилитарных машин типа семейных универсалов.
    Впрочем, возможность иметь на дешевом серийном компактном хэтчбеке одновременно формульный мотор (CVH 1600 — омологированный мотор Формулы Форд 80-х годов) и формульную свободную подвеску дорогого стоит — спасибо команде Ли Якокки, давшей нам в далеком 1975-м году такую возможность.
    Общая Теория Всего
    Напоследок проведу небольшой ликбез по теории «подвескостроения» — что там зачем сделано и что означают различные термины.
    Самое простое и, казалось бы, очевидное решение — прикрутить к машине колеса, как на телеге. То есть — вообще не делать никаких углов, поставить колесо параллельно осям машины. При этом колесо в ходе сжатия-отбоя остается перпендикулярным к дороге, в постоянном и надежном контакте с ней. Кстати — именно так стоят задние колеса на Фиесте, благодаря ее полузависимой задней подвеске с жесткой балкой.
    Но вот на передних колесах совместить центральную плоскость вращения колеса и ось его поворота конструктивно довольно сложно (особенно если говорить о классической двухрычажной подвеске типа заднеприводных «жигулей»), поскольку обе шаровые опоры (а тем более шкворни, как на Волге или УАЗе) вкупе с тормозным механизмом внутрь колеса, как правило, не помещаются. А раз так, то плоскость качения и ось поворота расходятся на расстояние А, называемое плечом обката (при повороте колесо обкатывается вокруг оси ab) — см. рис.2. В движении сила сопротивления качению неведущего колеса создает на этом плече А ощутимый момент, скачкообразно меняющийся при проезде неровностей. Мало кому понравится езда с постоянно рвущимся из рук рулем! Кроме того, придется изрядно попотеть, преодолевая этот самый момент в повороте.
     
    Стало быть, положительное (в данном случае) плечо обката желательно уменьшить, а то и вовсе свести к нулю. Для этого можно наклонить ось поворота ab (рис.3).
     
    На практике делают так: несколько наклонив ось поворота (бета), нужную величину добирают наклоном плоскости вращения колеса (альфа). Угол альфа и есть развал. Под этим углом колесо опирается о дорогу. Покрышка в зоне контакта, естественно, деформируется — см. рис.4. В результате автомобиль движется словно на двух конусах, стремящихся раскатиться в разные стороны. Чтобы компенсировать эту неприятность, плоскости вращения колес надо свести. Этот процесс называется регулировкой схождения. Как вы уже догадались, оба параметра жестко связаны. То есть,если угол развала нулевой, не должно быть и схождения, отрицательный — требуется расхождение, иначе шины будут «гореть». Если на автомобиле развал колес выставлен по-разному, его будет тянуть в сторону колеса с большим наклоном.
     
    Другие два угла обеспечивают стабилизацию управляемых колес — проще говоря, заставляют автомобиль с отпущенным рулем ехать прямо. Первый, уже знакомый нам угол поперечного наклона оси поворота (бета) отвечает за весовую стабилизацию. Легко заметить, что при этой схеме в момент отклонения колеса от «нейтрали» передок начинает подниматься (рис.5). А так как весит он немало, то при отпускании руля под действием силы тяжести система стремится занять исходное положение, соответствующее движению по прямой. Правда, для этого приходится сохранять то самое, хоть и небольшое, но нежелательное по соображениям усилия на руле, положительное плечо обката.
     
    Продольный угол наклона оси поворота — кастер (рис.6) — дает динамическую стабилизацию. Принцип ее ясен из поведения рояльного колесика — в движении оно стремится оказаться позади ножки, то есть занять наиболее устойчивое положение. Чтобы получить тот же эффект в автомобиле, точка пересечения оси поворота с поверхностью дороги (с) должна быть впереди центра пятна контакта колеса с дорогой (d). Для этого ось поворота и наклоняют вдоль хода машины.
     
    Теперь при повороте боковые реакции дороги, приложенные позади (спасибо кастеру!) стараются вернуть колесо на место — см. рис.7.
    Более того, если на машину действует боковая сила, не связанная с поворотом (например, вы едете по косогору или при боковом ветре), то кастер обеспечивает при случайно отпущенном руле плавный поворот машины «под склон» или «под ветер» и не дает ей опрокинуться.
    В переднеприводном автомобиле с подвеской МакФерсон ситуация совершенно иная. Эта конструкция позволяет получить нулевое и даже отрицательное плечо обката — ведь внутрь колеса здесь надо «запихнуть» лишь опору единственного рычага. Угол развала (и, соответственно, схождения) легко свести к минимуму. Так и есть: у Фиесты (как и у знакомых всем ВАЗов «восьмого» семейства) развал — 0°?30?, схождение — 0?0.5 мм. Такая регулировка развала-схождения называется нейтральной. Так как передние колеса теперь тянут автомобиль, динамическая стабилизация при разгоне не требуется — колесо уже не катится позади ножки, а тянет ее за собой. Небольшой (1°30?) кастер сохранен для устойчивости при торможении. Значительный вклад в «правильное» поведение автомобиля вносит небольшое отрицательное плечо обката — при возрастании сопротивления качению колеса оно автоматически корректирует траекторию.
    Буратино-тюнинг
    Разумеется, настройки подвески делаются не абы как — конструкторы тщательно просчитывают геометрию, затем испытатели откатывают вариант на треке, снова пересчитывают, корректируют геометрию, и снова испытывают — и так множество раз. А потом машину покупает буратино-тюнер — и начинает «улучшать» конструкцию.
    Первой (и наиболее распространенной) ошибкой является установка более широкой резины или резины на дисках с большим вылетом — это приводит к увеличению плеча обката колеса до положительных величин, и руль начинает рвать из рук, особенно при торможении.
    Ошибка номер два — поднятие зада машины проставками. При достаточно высоких проставках кастер, и так небольшой, становится нулевым или даже положительным — последнее очень опасно, так как при резком торможении руль может просто вырвать из рук, а если оборвется рулевая тяга — катастрофа даже на прямом участке дороги будет неминуемой.
    В отличие от этих двух ошибок, простое увеличение диаметра колеса (при сохранении неизменным вылета диска) на Фиесте не является проблемой — поскольку колесо имеет нейтральные (нулевые) углы развала и схождения, увеличение диаметра сказывается лишь на линейном значении кастера в сторону его небольшого увеличения. Ну и, как я объяснил вначале, влияет на настройку подвески по крену.
    И все-таки она кренится
    И все-таки, как можно видеть на фотографии из американского журнала Car & Driver, Фиесту Мк1 можно накренить — и преизрядно:

     
    Как же это получается? А все достаточно просто: во-первых, Фиеста загружена до полной массы — причем, кроме двух человек впереди, остальной груз в виде мешков с песком положили сзади в багажник. Во-вторых, Фиеста укомплектована штатными дисками 12’ — но с более низкой, чем обычно, резиной (результат — точка D опустилась вниз как из-за резины, так и из-за просадки пружин подвески).
    Особо надо отметить мешки с песком в багажнике. Дело в том, что задняя подвеска Фиесты — полузависимая с жесткой балкой (5-link dead beam axle) и без стабилизатора (стабилизатор ставится на нее только в версии XR2). Из-за оригинальной развесовки Фиесты (примерно 75% веса при одном водителе приходится на переднюю ось, и лишь 25% на заднюю) на слабозагруженной машине эта некомпенсированная по крену задняя подвеска не играет большой роли — однако после того, как задняя ось получила дополнительные 300 кг песка, ситуация резко поменялась, вес распределился в пропорции 60:40, и зад начал серьезно кренить лишенную стабилизаторов машину с «американскими» мягкими подвесками.
    Не далее как на днях я проверил эту гипотезу, когда возил картошку. Правда, 300 кг я все-таки не насыпал — но 170 кг в багажник положил играючи. Усиленные задние пружины просели не очень сильно — но передок, конечно, заметно задрался, и крены в поворотах появились.
    И, наконец, на фотографии ранняя американская версия Фиесты — скорее даже мелкосерийный прототип, с тяжелым и высоким мотором Kent-1600, а также геометрией и жесткостью подвески, не вполне соответствующей финальной спецификации Mk1 (известной как Valencia-1976). У нее выше центр тяжести и меньше стабилизирующие свойства подвески, меньше жесткость подвески — результат вы наблюдаете на фотографии.
    Но даже эта версия машины заслужила самые лестные отзывы журнала за управляемость. Не забывайте — на фотографии тяжело груженая машина идет в управляемом заносе всех четырех колес, большинство современных утилитарных машин аналогичного класса в этой ситуации безбожно вывешивают как минимум одно заднее колесо, а Фиеста, как видите, цепко держится всеми четырьмя, несмотря на запредельные крены. И, между прочим, «лосиная переставка» не переворачивает эту машину, как какой-то там несчастный Mercedes A-klasse.
    Кстати, приведенная выше фотография — практически единственная, на которой Фиеста Mk1 изображена со значительным креном. На самом же деле типичная картина Фиесты Mk1 в повороте — вот такая:
    Как видите — крены нулевые, Фиеста нагло едет «блинчиком» несмотря на значительные боковые ускорения. Машина с одним водителем на колесах 13’ может демонстрировать даже отрицательные крены — то есть поднимать внешний борт в повороте. Это уже, конечно, перебор — но факт есть факт. Умели в середине 70-х проектировать машины на Форде…
     
    А вот «Фиеста» Mk1 на ралли — в вираже даже удалось оторвать одно из передних колес от грунта, но крены по-прежнему весьма умеренные.
    Кстати говоря, в этом же Car & Driver эту же самую Фиесту сравнивали с Volkswagen Sirocco — при аналогичной динамике (четверть мили с места за 18 секунд) Фиеста была чуть ли не вдвое дешевле по цене и проходила 35 миль на одном галлоне топлива против 28 миль у Сирокко. Впечатляет? Вот и журналистов тоже впечатлило.
    Где тот Сирокко? А Фиеста — вот она, выпущено более 10 миллионов машин и продолжает выпускаться уже пятое поколение. Уже пятое — но снова с той же полузависимой подвеской сзади, и с аналогичной Mk1 компенсированной по крену подвеской спереди. Спустя 30 лет эти технические решения снова вернулись, доказав свою правильность. И эти решения послужили залогом убедительной победы питерца Аркадия Павловского в гонках Turing Lite — в которых единственная Фиеста Mk5, впервые стартовавшая в гонках, настолько легко раз за разом обходила почти 30 VW Polo, ситроенов и прочих одноклассников, что технической комиссии пришлось срочно выдумывать нарушения в регламенте (они их и выдумали — посчитав переделкой машины переставленный в салон аккумулятор). Вам смешно — а что им было делать, если гонки при таком техническом преимуществе теряли смысл еще на старте сезона?

     
    Видите — и тут Фиеста нагло едет «блинчиком», а идущие рядом Polo все-таки кренит, несмотря на «дубовые» спортивные подвески и стабилизаторы немерянной толщины. Геометрию с 1975 года никто так и не отменил…
     
     ford.h11.ru
  24. Like
    greega получил реакцию от Mazda3Air в Схема пневмоподвески электрическая   
    Стали часто задавать вопрос, как подключить блок клапанов к кнопкам....

    Схемы приводились не раз, но суджя по всему, народ не понимает эти схемы.

    Решил нарисовать для того, что-бы было и ежу понятно...



    Думаю часть вопросов снимется. 

    Диоды ставим 3-5 ампер, из расчёта потребления катушек. Кнопки  3х позицеонные, не фиксируемые, постоянно выключенные. 3х контактные. Параллельно клапанам, можно поставить ещё диоды, на схеме не отображены, (для меньшего влияния тока самоиндукции катушек, на контакты кнопок и схемы автомобиля) Но работать будет и без них....

  25. Like
    greega отреагировална heartstar в Обзор ресиверов объемом 4-6 л   
    вот какойто нашёл. интересно сколько литров. артикул 3205-3511111. 
    Баллон регенерационный ПАЗ. стоит в районе 600-900 рублей

×
×
  • Создать...